7 resultados para numerical calculation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Absorption or emission lines of Cr II are observed in a wide variety of astrophysical spectra and accurate atomic data are urgently needed to interpret these lines. Many of these data are impossible to measure experimentally and a full theoretical treatment is the only means by which these data can be obtained.

Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Cr II for forbidden transitions among the lowest-lying 74 fine-structure levels. Effective collision strengths have been computed for 18 individual electron temperatures of astrophysical importance, ranging from 2000-100 000 K.

Methods. The parallel suite of R-matrix packages, RMATRX II, which has recently been extended to allow for the inclusion of relativistic effects, has been used in the present work to compute the collision strengths and effective collision strengths for electron-impact excitation of Cr II. We concentrate in this publication on low-lying forbidden lines among the lowest 74 jj fine-structure levels with configurations 3d(5) and 3d(4)4s, although atomic data has been evaluated for all 39 060 transitions among the 280 jj levels of configurations 3d(5), 3d(4)4s and 3d(4)4p. This work constitutes the largest evaluation ever performed for this ion involving 1932 coupled channels.

Results. Collision and effective collision strengths are presented for all transitions among the lowest 74 J pi states of Cr II and comparisons made with the work of Bautista et al. (2009). While the effective collision strengths agree well for some transitions, significant discrepancies exist for others. We believe that the present atomic data represents the most accurate, most sophisticated and most complete data set for electron-impact excitation of Cr II and we would recommend them to astrophysicists and plasma physicists in their application work. We would expect that the effective collision strengths presented for the important low-lying forbidden lines are accurate to within 15%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The R-matrix method when applied to the study of intermediate energy electron scattering by the hydrogen atom gives rise to a large number of two electron integrals between numerical basis functions. Each integral is evaluated independently of the others, thereby rendering this a prime candidate for a parallel implementation. In this paper, we present a parallel implementation of this routine which uses a Graphical Processing Unit as a co-processor, giving a speedup of approximately 20 times when compared with a sequential version. We briefly consider properties of this calculation which make a GPU implementation appropriate with a view to identifying other calculations which might similarly benet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforced concrete (RC) jacketing is a common method to retrofit existing columns with poor structural performance. It can be applied in two different ways: if the continuity of the jacket is ensured, the axial load of the column can be transferred to the jacket, which will be directly loaded; conversely, if no continuity is provided, the jacket induces only confinement action. In both cases the strength and ductility evaluation is rather complex, due to the different physical phenomena included, such as confinement, composite action core-jacket, preload, buckling of longitudinal bars.
Although different theoretical studies have been carried out to calculate the confinement effects, a practical approach to evaluate the flexural capacity and ductility is still missing. The calculation of these quantities is often related to the use of commercial computer programs, taking advantage of numerical methods such as fiber method or finite element method.
This paper presents a simplified approach to calculate the flexural strength and ductility of square RC jacketed sections subjected to axial load and bending moment. In particular the proposed approach is based on the calibration of the stress-block parameters including the confinement effect. Equilibrium equations are determined and buckling of longitudinal bars is modeled with a suitable stress-strain law. Moment-curvature curves are derived with simple calculations. Finally, comparisons are made with numerical analyses carried out with the code OpenSees and with experimental data available in the literature, showing good agreement.