23 resultados para nonlinear energy sink


Relevância:

40.00% 40.00%

Publicador:

Resumo:

γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy.

However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved.

Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 1020 photons s−1mm−2mrad−2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 90° problem of cosmic-ray transport theory is revisited in this paper. By using standard forms of the wave spectrum in the solar wind, the pitch-angle Fokker–Planck coefficient and the parallel mean free path are computed for different resonance functions. A critical comparison is made of the strength of 90° scattering due to plasmawave effects, dynamical turbulence effects and nonlinear effects. It is demonstrated that, only for low-energy cosmic particles, dynamical effects are usually dominant. The novel results presented here are essential for an effective comparison of heliospheric observations for the parallel mean free path with the theoretical model results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently. In this article the influence of the wave spectrum in the energy range onto field-line random walk is investigated by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behavior of the field-lines. If the energy range spectral index exceeds unity a free-streaming behavior of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field-line wandering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study an energy-constrained sandpile model with random neighbors. The critical behavior of the model is in the same universality class as the mean-field self-organized criticality sandpile. The critical energy E-c depends on the number of neighbors n for each site, but the various exponents are independent of n. A self-similar structure with n-1 major peaks is developed for the energy distribution p(E) when the system approaches its stationary state. The avalanche dynamics contributes to the major peaks appearing at E-Pk = 2k/(2n - 1) with k = 1,2,...,n-1, while the fine self-similar structure is a natural result of the way the system is disturbed. [S1063-651X(99)10307-6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (> 10(19) W/cm(2)) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of an ultraintense, 30-fs laser pulse with a preformed plasma was investigated as a method of producing a beam of high-energy electrons. We used thin foil targets that are exploded by the laser amplified spontaneous emission preceding the main pulse. Optical diagnostics show that the main pulse interacts with a plasma whose density is well below the critical density. By varying the foil thickness, we were able to obtain a substantial emission of electrons in a narrow cone along the laser direction with a typical energy well above the laser ponderomotive potential. These results are explained in terms of wake-field acceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg–de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h = Zd0nd0/ne0 affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stationary solutions to the equations of nonlinear diffusive shock acceleration play a fundamental role in the theory of cosmic-ray acceleration. Their existence usually requires that a fraction of the accelerated particles be allowed to escape from the system. Because the scattering mean free path is thought to be an increasing function of energy, this condition is conventionally implemented as an upper cutoff in energy space-particles are then permitted to escape from any part of the system, once their energy exceeds this limit. However, because accelerated particles are responsible for the substantial amplification of the ambient magnetic field in a region upstream of the shock front, we examine an alternative approach in which particles escape over a spatial boundary. We use a simple iterative scheme that constructs stationary numerical solutions to the coupled kinetic and hydrodynamic equations. For parameters appropriate for supernova remnants, we find stationary solutions with efficient acceleration when the escape boundary is placed at the point where growth and advection of strongly driven nonresonant waves are in balance. We also present the energy dependence of the distribution function close to the energy where it cuts off-a diagnostic that is in principle accessible to observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear interactions take place in most systems that arise in music acoustics, usually as a result of player-instrument coupling. Several time-stepping methods exist for the numerical simulation of such systems. These methods generally involve the discretization of the Newtonian description of the system. However, it is not always possible to prove the stability of the resulting algorithms, especially when dealing with systems where the underlying force is a non-analytic function of the phase space variables. On the other hand, if the discretization is carried out on the Hamiltonian description of the system, it is possible to prove the stability of the derived numerical schemes. This Hamiltonian approach is applied to a series of test models of single or multiple nonlinear collisions and the energetic properties of the derived schemes are discussed. After establishing that the schemes respect the principle of conservation of energy, a nonlinear single-reed model is formulated and coupled to a digital bore, in order to synthesize clarinet-like sounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.