2 resultados para non-parametric smoothing
Resumo:
Identifying 20th-century periodic coastal surge variation is strategic for the 21st-century coastal surge estimates, as surge periodicities may amplify/reduce future MSL enhanced surge forecasts. Extreme coastal surge data from Belfast Harbour (UK) tide gauges are available for 1901–2010 and provide the potential for decadal-plus periodic coastal surge analysis. Annual extreme surge-elevation distributions (sampled every 10-min) are analysed using PCA and cluster analysis to decompose variation within- and between-years to assess similarity of years in terms of Surge Climate Types, and to establish significance of any transitions in Type occurrence over time using non-parametric Markov analysis. Annual extreme surge variation is shown to be periodically organised across the 20th century. Extreme surge magnitude and distribution show a number of significant cyclonic induced multi-annual (2, 3, 5 & 6 years) cycles, as well as dominant multi-decadal (15–25 years) cycles of variation superimposed on an 80 year fluctuation in atmospheric–oceanic variation across the North Atlantic (relative to NAO/AMO interaction). The top 30 extreme surge events show some relationship with NAO per se, given that 80% are associated with westerly dominant atmospheric flows (+ NAO), but there are 20% of the events associated with blocking air massess (− NAO). Although 20% of the top 30 ranked positive surges occurred within the last twenty years, there is no unequivocal evidence of recent acceleration in extreme surge magnitude related to other than the scale of natural periodic variation.
Resumo:
Estimates of HIV prevalence are important for policy in order to establish the health status of a country's population and to evaluate the effectiveness of population-based interventions and campaigns. However, participation rates in testing for surveillance conducted as part of household surveys, on which many of these estimates are based, can be low. HIV positive individuals may be less likely to participate because they fear disclosure, in which case estimates obtained using conventional approaches to deal with missing data, such as imputation-based methods, will be biased. We develop a Heckman-type simultaneous equation approach which accounts for non-ignorable selection, but unlike previous implementations, allows for spatial dependence and does not impose a homogeneous selection process on all respondents. In addition, our framework addresses the issue of separation, where for instance some factors are severely unbalanced and highly predictive of the response, which would ordinarily prevent model convergence. Estimation is carried out within a penalized likelihood framework where smoothing is achieved using a parametrization of the smoothing criterion which makes estimation more stable and efficient. We provide the software for straightforward implementation of the proposed approach, and apply our methodology to estimating national and sub-national HIV prevalence in Swaziland, Zimbabwe and Zambia.