23 resultados para network support


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a decoupled fault ride-through strategy for a doubly fed induction generator (DFIG) to enhance network stability during grid disturbances. The decoupled operation proposes that a DFIG operates as an induction generator (IG) with the converter unit acting as a reactive power source during a fault condition. The transition power characteristics of the DFIG have been analyzed to derive the capability of the proposed strategy under various system conditions. The optimal crowbar resistance is obtained to exploit the maximum power capability from the DFIG during decoupled operation. The methods have been established to ensure proper coordination between the IG mode and reactive power compensation from the grid-side converter during decoupled operation. The viability and benefits of the proposed strategy are demonstrated using different test network structures and different wind penetration levels. Control performance has been benchmarked against existing grid code standards and commercial wind generator systems, based on the optimal network support required (i.e., voltage or frequency) by the system operator from a wind farm installed at a particular location.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose. Examine the associations among social support, network heterogeneity, and smoking behavior in a large sample of Finnish female municipal employees.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is concerned with the voltage and reactive power issues surrounding the connection of Distributed Generation (DG) on the low-voltage (LV) distribution network. The presented system-wide voltage control algorithm consists of three stages. Firstly available reactive power reserves are utilized. Then, if required, DG active power output is curtailed. Finally, curtailment of non-critical site demand is considered. The control methodology is tested on a variant of the 13-bus IEEE Node Radial Distribution Test Feeder. The presented control algorithm demonstrated that the distribution system operator (DSO) can maintain voltage levels within a desired statutory range by dispatching reactive power from DG or network devices. The practical application of the control strategy is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research to date has identified incubator units as an effective mechanism for supporting the growth and development of small entrepreneurial firms. Advantages are gained not only from the provision of appropriate facilities and external managerial expertise on site, but also from the opportunity to develop entrepreneurial networks facilitated by the spatial proximity of incubator firms. Therefore, the research question upon which the paper is based investigates the impact of context, in other words the degree to which the networking opportunities provided by the university incubator support the small firm in its pursuit of sustainability and growth

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the rationale for disease specific research networks in general as well as the aims and function of the European Cystic Fibrosis Society-Clinical Trials Network (ECFS-CTN) specifically. The ECFS-CTN was founded in 2009 with the aim of improving the quality and quantity of clinical research in the area of cystic fibrosis (CF) in Europe. A network of 18 clinical trial sites in 8 European countries was established according to uniform state-of-the-art quality criteria. To support the ECFS-CTN in the acquisition, planning and conduct of clinical trials, the network is equipped with a coordinating centre, steering and executive committees, and committees for protocol review, standardization, training and networking as well as a data safety monitoring board. A strong partnership with European CF patient parent organizations aims to increase awareness of the need for efficient clinical research and the participation of patients in clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostatic intraepithelial neoplasia (PIN) diagnosis and grading are affected by uncertainties which arise from the fact that almost all knowledge of PIN histopathology is expressed in concepts, descriptive linguistic terms, and words. A Bayesian belief network (BBN) was therefore used to reduce the problem of uncertainty in diagnostic clue assessment, while still considering the dependences between elements in the reasoning sequence. A shallow network was used with an open-tree topology, with eight first-level descendant nodes for the diagnostic clues (evidence nodes), each independently linked by a conditional probability matrix to a root node containing the diagnostic alternatives (decision node). One of the evidence nodes was based on the tissue architecture and the others were based on cell features. The system was designed to be interactive, in that the histopathologist entered evidence into the network in the form of likelihood ratios for outcomes at each evidence node. The efficiency of the network was tested on a series of 110 prostate specimens, subdivided as follows: 22 cases of non-neoplastic prostate or benign prostatic tissue (NP), 22 PINs of low grade (PINlow), 22 PINs of high grade (PINhigh), 22 prostatic adenocarcinomas with cribriform pattern (PACcri), and 22 prostatic adenocarcinomas with large acinar pattern (PAClgac). The results obtained in the benign and malignant categories showed that the belief for the diagnostic alternatives is very high, the values being in general more than 0.8 and often close to 1.0. When considering the PIN lesions, the network classified and graded most of the cases with high certainty. However, there were some cases which showed values less than 0.8 (13 cases out of 44), thus indicating that there are situations in which the feature changes are intermediate between contiguous categories or grades. Discrepancy between morphological grading and the BBN results was observed in four out of 44 PIN cases: one PINlow was classified as PINhigh and three PINhigh were classified as PINlow. In conclusion, the network can grade PlN lesions and differentiate them from other prostate lesions with certainty. In particular, it offers a descriptive classifier which is readily implemented and which allows the use of linguistic, fuzzy variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim-To develop an expert system model for the diagnosis of fine needle aspiration cytology (FNAC) of the breast.

Methods-Knowledge and uncertainty were represented in the form of a Bayesian belief network which permitted the combination of diagnostic evidence in a cumulative manner and provided a final probability for the possible diagnostic outcomes. The network comprised 10 cytological features (evidence nodes), each independently linked to the diagnosis (decision node) by a conditional probability matrix. The system was designed to be interactive in that the cytopathologist entered evidence into the network in the form of likelihood ratios for the outcomes at each evidence node.

Results-The efficiency of the network was tested on a series of 40 breast FNAC specimens. The highest diagnostic probability provided by the network agreed with the cytopathologists' diagnosis in 100% of cases for the assessment of discrete, benign, and malignant aspirates. A typical probably benign cases were given probabilities in favour of a benign diagnosis. Suspicious cases tended to have similar probabilities for both diagnostic outcomes and so, correctly, could not be assigned as benign or malignant. A closer examination of cumulative belief graphs for the diagnostic sequence of each case provided insight into the diagnostic process, and quantitative data which improved the identification of suspicious cases.

Conclusion-The further development of such a system will have three important roles in breast cytodiagnosis: (1) to aid the cytologist in making a more consistent and objective diagnosis; (2) to provide a teaching tool on breast cytological diagnosis for the non-expert; and (3) it is the first stage in the development of a system capable of automated diagnosis through the use of expert system machine vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of appropriate Electric Vehicle (EV) charging strategies has been identified as an effective way to accommodate an increasing number of EVs on Low Voltage (LV) distribution networks. Most research studies to date assume that future charging facilities will be capable of regulating charge rates continuously, while very few papers consider the more realistic situation of EV chargers that support only on-off charging functionality. In this work, a distributed charging algorithm applicable to on-off based charging systems is presented. Then, a modified version of the algorithm is proposed to incorporate real power system constraints. Both algorithms are compared with uncontrolled and centralized charging strategies from the perspective of both utilities and customers. © 2013 IEEE.