24 resultados para network identification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a novel recurrent neural networkarchitecture for video-based person re-identification.Given the video sequence of a person, features are extracted from each frame using a convolutional neural network that incorporates a recurrent final layer, which allows information to flow between time-steps. The features from all time steps are then combined using temporal pooling to give an overall appearance feature for the complete sequence. The convolutional network, recurrent layer, and temporal pooling layer, are jointly trained to act as a feature extractor for video-based re-identification using a Siamese network architecture.Our approach makes use of colour and optical flow information in order to capture appearance and motion information which is useful for video re-identification. Experiments are conduced on the iLIDS-VID and PRID-2011 datasets to show that this approach outperforms existing methods of video-based re-identification.

https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Project Source Code

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper exposes the strengths and weaknesses of the recently proposed velocity-based local model (LM) network. The global dynamics of the velocity-based blended representation are directly related to the dynamics of the underlying local models, an important property in the design of local controller networks. Furthermore, the sub-models are continuous-time and linear providing continuity with established linear theory and methods. This is not true for the conventional LM framework, where the global dynamics are only weakly related to the affine sub-models. In this paper, a velocity-based multiple model network is identified for a highly nonlinear dynamical system. The results show excellent dynamical modelling performances, highlighting the value of the velocity-based approach for the design and analysis of LM based control. Three important practical issues are also addressed. These relate to the blending of the velocity-based local models, the use of normalised Gaussian basis functions and the requirement of an input derivative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification and classification of network traffic and protocols is a vital step in many quality of service and security systems. Traffic classification strategies must evolve, alongside the protocols utilising the Internet, to overcome the use of ephemeral or masquerading port numbers and transport layer encryption. This research expands the concept of using machine learning on the initial statistics of flow of packets to determine its underlying protocol. Recognising the need for efficient training/retraining of a classifier and the requirement for fast classification, the authors investigate a new application of k-means clustering referred to as 'two-way' classification. The 'two-way' classification uniquely analyses a bidirectional flow as two unidirectional flows and is shown, through experiments on real network traffic, to improve classification accuracy by as much as 18% when measured against similar proposals. It achieves this accuracy while generating fewer clusters, that is, fewer comparisons are needed to classify a flow. A 'two-way' classification offers a new way to improve accuracy and efficiency of machine learning statistical classifiers while still maintaining the fast training times associated with the k-means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Around 80% of acute myeloid leukemia (AML) patients achieve a complete remission, however many will relapse and ultimately die of their disease. The association between karyotype and prognosis has been studied extensively and identified patient cohorts as having favourable [e.g. t(8; 21), inv (16)/t(16; 16), t(15; 17)], intermediate [e.g. cytogenetically normal (NK-AML)] or adverse risk [e.g. complex karyotypes]. Previous studies have shown that gene expression profiling signatures can classify the sub-types of AML, although few reports have shown a similar feature by using methylation markers. The global methylation patterns in 19 diagnostic AML samples were investigated using the Methylated CpG Island Amplification Microarray (MCAM) method and CpG island microarrays containing 12,000 CpG sites. The first analysis, comparing favourable and intermediate cytogenetic risk groups, revealed significantly differentially methylated CpG sites (594 CpG islands) between the two subgroups. Mutations in the NPM1 gene occur at a high frequency (40%) within the NK-AML subgroup and are associated with a more favourable prognosis in these patients. A second analysis comparing the NPM1 mutant and wild-type research study subjects again identified distinct methylation profiles between these two subgroups. Network and pathway analysis revealed possible molecular mechanisms associated with the different risk and/or mutation sub-groups. This may result in a better classification of the risk groups, improved monitoring targets, or the identification of novel molecular therapies.