71 resultados para network congestion control
Resumo:
In this paper, a Radial Basis Function neural network based AVR is proposed. A control strategy which generates local linear models from a global neural model on-line is used to derive controller feedback gains based on the Generalised Minimum Variance technique. Testing is carried out on a micromachine system which enables evaluation of practical implementation of the scheme. Constraints imposed by gathering training data, computational load, and memory requirements for the training algorithm are addressed.
Resumo:
Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Query processing over the Internet involving autonomous data sources is a major task in data integration. It requires the estimated costs of possible queries in order to select the best one that has the minimum cost. In this context, the cost of a query is affected by three factors: network congestion, server contention state, and complexity of the query. In this paper, we study the effects of both the network congestion and server contention state on the cost of a query. We refer to these two factors together as system contention states. We present a new approach to determining the system contention states by clustering the costs of a sample query. For each system contention state, we construct two cost formulas for unary and join queries respectively using the multiple regression process. When a new query is submitted, its system contention state is estimated first using either the time slides method or the statistical method. The cost of the query is then calculated using the corresponding cost formulas. The estimated cost of the query is further adjusted to improve its accuracy. Our experiments show that our methods can produce quite accurate cost estimates of the submitted queries to remote data sources over the Internet.
Resumo:
This paper proposes a coordinated control of the rotor and grid side converters (RSC & GSC) of doubly-fed induction generator (DFIG) based wind generation systems under unbalanced voltage conditions. System behaviors and operations of the RSC and GSC under unbalanced voltage are illustrated. To provide enhanced operation, the RSC is controlled to eliminate the torque oscillations at double supply frequency under unbalanced stator supply. The oscillation of the stator output active power is then cancelled by the active power output from the GSC, to ensure constant active power output from the overall DFIG generation system. To provide the required positive and negative sequence currents control for the RSC and GSC, a current control strategy containing a main controller and an auxiliary controller is analyzed. The main controller is implemented in the positive (dq)+ frame without involving positive/negative sequence decomposition whereas the auxiliary controller is implemented in the negative sequence (dq)? frame with negative sequence current extracted. Simulation results using EMTDC/PSCAD are presented for a 2MW DFIG wind generation system to validate the proposed control scheme and to show the enhanced system operation during unbalanced voltage supply.
Resumo:
Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.