31 resultados para muscle fiber type
Resumo:
Little is known about the molecular characteristics of the voltage-activated K(+) (K(v)) channels that underlie the A-type K(+) current in vascular smooth muscle cells of the systemic circulation. We investigated the molecular identity of the A-type K(+) current in retinal arteriolar myocytes using patch-clamp techniques, RT-PCR, immunohistochemistry, and neutralizing antibody studies. The A-type K(+) current was resistant to the actions of specific inhibitors for K(v)3 and K(v)4 channels but was blocked by the K(v)1 antagonist correolide. No effects were observed with pharmacological agents against K(v)1.1/2/3/6 and 7 channels, but the current was partially blocked by riluzole, a K(v)1.4 and K(v)1.5 inhibitor. The current was not altered by the removal of extracellular K(+) but was abolished by flecainide, indicative of K(v)1.5 rather than K(v)1.4 channels. Transcripts encoding K(v)1.5 and not K(v)1.4 were identified in freshly isolated retinal arterioles. Immunofluorescence labeling confirmed a lack of K(v)1.4 expression and revealed K(v)1.5 to be localized to the plasma membrane of the arteriolar smooth muscle cells. Anti-K(v)1.5 antibody applied intracellularly inhibited the A-type K(+) current, whereas anti-K(v)1.4 antibody had no effect. Co-expression of K(v)1.5 with K(v)beta1 or K(v)beta3 accessory subunits is known to transform K(v)1.5 currents from delayed rectifers into A-type currents. K(v)beta1 mRNA expression was detected in retinal arterioles, but K(v)beta3 was not observed. K(v)beta1 immunofluorescence was detected on the plasma membrane of retinal arteriolar myocytes. The findings of this study suggest that K(v)1.5, most likely co-assembled with K(v)beta1 subunits, comprises a major component underlying the A-type K(+) current in retinal arteriolar smooth muscle cells
Resumo:
This study assessed the contribution of L-type Ca2+ channels and other Ca2+ entry pathways to Ca2+ store refilling in choroidal arteriolar smooth muscle. Voltage-clamp recordings were made from enzymatically isolated choroidal microvascular smooth muscle cells and from cells within vessel fragments (containing <10 cells) using the whole-cell perforated patch-clamp technique. Cell Ca2+ was estimated by fura-2 microfluorimetry. After Ca2+ store depletion with caffeine (10 mM), refilling was slower in cells held at -20 mV compared to -80 mV (refilling half-time was 38 +/- 10 and 20 +/- 6 s, respectively). To attempt faster refilling via L-type Ca2+ channels, depolarising steps from -60 to -20 mV were applied during a 30 s refilling period following caffeine depletion. Each step activated L-type Ca2+ currents and [Ca2+]i transients, but failed to accelerate refilling. At -80 mV and in 20 mM TEA, prolonged caffeine exposure produced a transient Ca2+-activated Cl- current (I(Cl)(Ca)) followed by a smaller sustained current. The sustained current was resistant to anthracene-9-carboxylic acid (1 mM; an I(Cl)(Ca) blocker) and to BAPTA AM, but was abolished by 1 microM nifedipine. This nifedipine-sensitive current reversed at +29 +/- 2 mV, which shifted to +7 +/- 5 mV in Ca2+-free solution. Cyclopiazonic acid (20 microM; an inhibitor of sarcoplasmic reticulum Ca2+-ATPase) also activated the nifedipine-sensitive sustained current. At -80 mV, a 5 s caffeine exposure emptied Ca2+ stores and elicited a transient I(Cl)(Ca). After 80 s refilling, another caffeine challenge produced a similar inward current. Nifedipine (1 microM) during refilling reduced the caffeine-activated I(Cl)(Ca) by 38 +/- 5 %. The effect was concentration dependent (1-3000 nM, EC50 64 nM). In Ca2+-free solution, store refilling was similarly depressed (by 46 +/- 6 %). Endothelin-1 (10 nM) applied at -80 mV increased [Ca2+]i, which subsided to a sustained 198 +/- 28 nM above basal. Cell Ca2+ was then lowered by 1 microM nifedipine (to 135 +/- 22 nM), which reversed on washout. These results show that L-type Ca2+ channels fail to contribute to Ca2+ store refilling in choroidal arteriolar smooth muscle. Instead, they refill via a novel non-selective store-operated cation conductance that is blocked by nifedipine.
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.
Resumo:
AIMS/HYPOTHESIS: To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells. METHODS: Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 micromol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+ solution. RESULTS: Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKCbeta antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine. CONCLUSION/INTERPRETATION: These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKCbeta seems to play a role in mediating this effect.
Resumo:
The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P <0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P <0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P <0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.
Resumo:
Freshly dispersed sheep mesenteric lymphatic smooth muscle cells were studied at 37 degrees C using the perforated patch-clamp technique with Cs(+)- and K(+)-filled pipettes. Depolarizing steps evoked currents that consisted of L-type Ca(2+) [I(Ca(L))] current and a slowly developing current. The slow current reversed at 1 +/- 1.5 mV with symmetrical Cl(-) concentrations compared with 23.2 +/- 1.2 mV (n = 5) and -34.3 +/- 3.5 mV (n = 4) when external Cl(-) was substituted with either glutamate (86 mM) or I(-) (125 mM). Nifedipine (1 microM) blocked and BAY K 8644 enhanced I(Ca(L)), the slow-developing sustained current, and the tail current. The Cl(-) channel blocker anthracene-9-carboxylic acid (9-AC) reduced only the slowly developing inward and tail currents. Application of caffeine (10 mM) to voltage-clamped cells evoked currents that reversed close to the Cl(-) equilibrium potential and were sensitive to 9-AC. Small spontaneous transient depolarizations and larger action potentials were observed in current clamp, and these were blocked by 9-AC. Evoked action potentials were triphasic and had a prominent plateau phase that was selectively blocked by 9-AC. Similarly, fluid output was reduced by 9-AC in doubly cannulated segments of spontaneously pumping sheep lymphatics, suggesting that the Ca(2+)-activated Cl(-) current plays an important role in the electrical activity underlying spontaneous activity in this tissue. PMID: 11029279 [PubMed - indexed for MEDLINE]
Resumo:
1. Isolated sheep urethral cells were studied using the perforated patch clamp technique (T = 37 degrees C). Depolarizing steps ranging from -40 to -10 mV evoked an inward current that peaked within 10 ms and a slower inward current. Stepping back to the holding potential of -80 mV evoked large inward tail currents. All three currents were abolished by nifedipine (1 microM). Substitution of external Ca2+ with Ba2+ resulted in potentiation of the fast inward current and blockade of the slow current and tails. 2. Changing the chloride equilibrium potential (ECl) from 0 to +27 mV shifted the reversal potential of the tail currents from 1 +/- 1 to 27 +/- 1 mV (number of cells, n = 5). Chloride channel blockers, niflumic acid (10 microM) and anthracene-9-carboxylic acid (9AC, 1 mM), reduced the slow current and tails suggesting that these were Ca(2+)-activated Cl- currents, ICl(Ca). 4. Caffeine (10 mM) induced currents that reversed at ECl and were blocked by niflumic acid (10 microM). 5. In current clamp mode, some cells developed spontaneous transient depolarizations (STDs) and action potentials. Short exposure to nifedipine blocked the action potentials and unmasked STDs. In contrast, 9AC and niflumic acid reduced the amplitude of the STDs and blocked the action potentials. 6. In conclusion, these cells have both L-type ICa and ICl(Ca). The former appears to be responsible for the upstroke of the action potential, while the latter may act as a pacemaker current.
Resumo:
1. Effects of endothelin-1 (Et-1) were studied on membrane currents in choroidal arteriolar smooth muscle by using perforated patch-clamp recordings. 2. Et-1 (10 nM) activated oscillatory Ca(2+)-activated Cl(-)-currents (I(Cl(Ca))) which could not be reversed by washing out. 3. Currents through L-type Ca(2+) channels were resolved in a divalent free medium (I(Ca(L)Na)). Et-1 reduced I(Ca(L)Na) by 75 +/- 7% within 30 s and this effect faded over 5 min, when the depression remained constant. On washing out Et-1, I(Ca(L)Na) almost completely recovered within 10 s. 4. BQ123 (1 microM), a peptide Et(A) receptor blocker, prevented the activation of I(Cl(Ca)), but failed to inhibit I(Cl(Ca)) transients once they had been initiated. In contrast, BQ123 not only prevented but also reversed the inhibition of I(Ca(L)Na) by Et-1. BQ788 (1 microM), an Et(B) receptor antagonist, did not prevent the activation of I(Cl(Ca)) or the inhibition of I(Ca(L)Na) by Et-1. 5. ABT-627 (10 nM), a non-peptide Et(A) receptor antagonist also blocked the activation of I(Cl(Ca)). However, on I(Ca(L)Na), ABT-627 (10 nM) mimicked the action of Et-1 an effect blocked by BQ123 suggesting that ABT-627 acted as an agonist. 6. The data are consistent with choroidal arteriolar smooth muscle cells having two types of Et(A) receptor, one where BQ123 is an antagonist and ABT-627 an agonist, where ligands dissociate freely and this receptor is coupled to inhibition of L-type Ca(2+) channels. In the other, BQ123 and ABT-627 are both antagonists and with Et-1 the receptor converts to a high affinity state producing the classical irreversible activation I(Cl(Ca)).
Resumo:
Structural homologues of vertebrate regulatory peptides found in defensive skin secretions of anuran amphibians often display enhanced bioactivity and receptor binding when compared with endogenous mammalian peptide ligands. Maximakinin, a novel N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the skin venom of a Chinese toad (Bombina maxima), displays such activity enhancement when compared with bradykinin but is additionally highly selective for mammalian arterial smooth muscle bradykinin receptors displaying a 50-fold increase in molar potency in this smooth muscle type. In contrast, a 100-fold decrease in molar potency was observed at bradykinin receptors in intestinal and uterine smooth muscle preparations. Maximakinin has thus evolved as a “smart” defensive weapon in the toad with receptor/tissue selective targeting. Natural selection of amphibian skin venom peptides for antipredator defence, through inter-species delivery by an exogenous secretory mode, produces subtle structural stabilisation modifications that can potentially provide new insights for the design of selectively targeted peptide therapeutics.
Resumo:
Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 +-ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl- channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation.
Resumo:
The role of optical FeIII absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~3560-9200Å, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed FeIII spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY [plane-parallel, non-local thermodynamic equilibrium (LTE)], with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with the Fiber-fed Extended Range Optical Spectrograph (FEROS), reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of FeIII transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.
Resumo:
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations