6 resultados para multi-way analysis
Resumo:
Franz Liszt has all too often been discarded as the virtuosic showman, despite the fact that his several of works have often gained great praise and attracted scholarly engagement. However, one also finds striking development of formal design and tonal harmony in many of the works for his principal composition medium, the piano. This paper seeks to explore the practical application of James A. Hepokoski and Warren Darcy’s 'Sonata Theory' upon Liszt’s magnum opus for the instrument, the Sonata in B Minor.
I shall first consider the historical analyses placed upon the work that deal with structural design, as it pertains to the paradigm of Classical sonata-form. Previous research reveals two main theoretical camps; those in favour of a multi-movement analysis (with conflicting hypotheses therein) and those in favour of a single movement sonata-form. An understanding of these historical conceptions of the piece allows one to then highlight areas of conflict and offer a new solution.
Finally, I shall use Sonata Theory to survey the Sonata in B Minor’s landscape in a new light. The title ‘Sonata’ has clear generic implications, many of which are met by Liszt; 'Sonata Theory' provides a model with which to outline the compositional deformations employed by the composer and the implications of this practice. In particular, I offer new perspectives on the validity of the double-function form, insight into the rhetorical layout of a rotational discourse, and propose a nuanced analysis befitting of this striking work.
Resumo:
This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.
Resumo:
This paper studies the impact of in-phase and quadrature-phase imbalance (IQI) in two-way amplify-and-forward (AF) relaying systems. In particular, the effective signal-to-interference-plus-noise ratio (SINR) is derived for each source node, considering four different linear detection schemes, namely, uncompensated (Uncomp) scheme, maximal-ratio-combining (MRC), zero-forcing (ZF) and minimum mean-square error (MMSE) based schemes. For each proposed scheme, the outage probability (OP) is investigated over independent, non-identically distributed Nakagami-m fading channels, and exact closed-form expressions are derived for the first three schemes. Based on the closed-form OP expressions, an adaptive detection mode switching scheme is designed for minimizing the OP of both sources. An important observation is that, regardless of the channel conditions and transmit powers, the ZF-based scheme should always be selected if the target SINR is larger than 3 (4.77dB), while the MRC-based scheme should be avoided if the target SINR is larger than 0.38 (-4.20dB).
Resumo:
We investigate the performance of dual-hop two-way amplify-and-forward (AF) relaying in the presence of inphase and quadrature-phase imbalance (IQI) at the relay node. In particular, the effective signal-to-interference-plus-noise ratio (SINR) at both sources is derived. These SINRs are used to design an instantaneous power allocation scheme, which maximizes the minimum SINR of the two sources under a total transmit power constraint. The solution to this optimization problem is analytically determined and used to evaluate the outage probability (OP) of the considered two-way AF relaying system. Both analytical and numerical results show that IQI can create fundamental performance limits on two-way relaying, which cannot be avoided by simply improving the channel conditions.