5 resultados para multi-objective genetic algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical study of a linear compressor cascade to investigate the effective end wall profiling rules for highly-loaded axial compressors. The first step in the research applies a correlation analysis for the different flow field parameters by a data mining over 600 profiling samples to quantify how variations of loss, secondary flow and passage vortex interact with each other under the influence of a profiled end wall. The result identifies the dominant role of corner separation for control of total pressure loss, providing a principle that only in the flow field with serious corner separation does the does the profiled end wall change total pressure loss, secondary flow and passage vortex in the same direction. Then in the second step, a multi-objective optimization of a profiled end wall is performed to reduce loss at design point and near stall point. The development of effective end wall profiling rules is based on the manner of secondary flow control rather than the geometry features of the end wall. Using the optimum end wall cases from the Pareto front, a quantitative tool for analyzing secondary flow control is employed. The driving force induced by a profiled end wall on different regions of end wall flow are subjected to a detailed analysis and identified for their positive/negative influences in relieving corner separation, from which the effective profiling rules are further confirmed. It is found that the profiling rules on a cascade show distinct differences at design point and near stall point, thus loss control of different operating points is generally independent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.