1 resultado para multi-execution
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (37)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Brock University, Canada (17)
- CentAUR: Central Archive University of Reading - UK (129)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (15)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (102)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Peer Publishing (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (46)
- DRUM (Digital Repository at the University of Maryland) (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (107)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (6)
- Massachusetts Institute of Technology (7)
- Ministerio de Cultura, Spain (11)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (42)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (62)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (35)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (18)
- Universidade dos Açores - Portugal (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (184)
- Université de Montréal, Canada (36)
- University of Queensland eSpace - Australia (42)
- University of Southampton, United Kingdom (1)
Resumo:
Graphics Processing Units (GPUs) are becoming popular accelerators in modern High-Performance Computing (HPC) clusters. Installing GPUs on each node of the cluster is not efficient resulting in high costs and power consumption as well as underutilisation of the accelerator. The research reported in this paper is motivated towards the use of few physical GPUs by providing cluster nodes access to remote GPUs on-demand for a financial risk application. We hypothesise that sharing GPUs between several nodes, referred to as multi-tenancy, reduces the execution time and energy consumed by an application. Two data transfer modes between the CPU and the GPUs, namely concurrent and sequential, are explored. The key result from the experiments is that multi-tenancy with few physical GPUs using sequential data transfers lowers the execution time and the energy consumed, thereby improving the overall performance of the application.