1 resultado para mining data streams
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Aberdeen University (8)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (101)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (64)
- Cochin University of Science & Technology (CUSAT), India (9)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (23)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- DRUM (Digital Repository at the University of Maryland) (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (23)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (12)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (11)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (27)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (12)
- Universidad Politécnica de Madrid (39)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (20)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (13)
- Université de Lausanne, Switzerland (16)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Michigan (12)
- University of Queensland eSpace - Australia (175)
- University of Southampton, United Kingdom (9)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
With Tweet volumes reaching 500 million a day, sampling is inevitable for any application using Twitter data. Realizing this, data providers such as Twitter, Gnip and Boardreader license sampled data streams priced in accordance with the sample size. Big Data applications working with sampled data would be interested in working with a large enough sample that is representative of the universal dataset. Previous work focusing on the representativeness issue has considered ensuring the global occurrence rates of key terms, be reliably estimated from the sample. Present technology allows sample size estimation in accordance with probabilistic bounds on occurrence rates for the case of uniform random sampling. In this paper, we consider the problem of further improving sample size estimates by leveraging stratification in Twitter data. We analyze our estimates through an extensive study using simulations and real-world data, establishing the superiority of our method over uniform random sampling. Our work provides the technical know-how for data providers to expand their portfolio to include stratified sampled datasets, whereas applications are benefited by being able to monitor more topics/events at the same data and computing cost.