1 resultado para method support
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (233)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (18)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (10)
- Cochin University of Science & Technology (CUSAT), India (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (87)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (44)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (27)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (10)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- Scielo España (1)
- Scielo Saúde Pública - SP (26)
- Universidad de Alicante (12)
- Universidad Politécnica de Madrid (20)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (13)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (19)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (3)
- University of Queensland eSpace - Australia (213)
Resumo:
This paper formulates a linear kernel support vector machine (SVM) as a regularized least-squares (RLS) problem. By defining a set of indicator variables of the errors, the solution to the RLS problem is represented as an equation that relates the error vector to the indicator variables. Through partitioning the training set, the SVM weights and bias are expressed analytically using the support vectors. It is also shown how this approach naturally extends to Sums with nonlinear kernels whilst avoiding the need to make use of Lagrange multipliers and duality theory. A fast iterative solution algorithm based on Cholesky decomposition with permutation of the support vectors is suggested as a solution method. The properties of our SVM formulation are analyzed and compared with standard SVMs using a simple example that can be illustrated graphically. The correctness and behavior of our solution (merely derived in the primal context of RLS) is demonstrated using a set of public benchmarking problems for both linear and nonlinear SVMs.