2 resultados para measurement of power loss
Resumo:
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Resumo:
Dissolved CO2 measurements are usually made using a Severinghaus electrode, which is bulky and can suffer from electrical interference. In contrast, optical sensors for gaseous CO2, whilst not suffering these problems, are mainly used for making gaseous (not dissolved) CO2 measurements, due to dye leaching and protonation, especially at high ionic strengths (>0.01 M) and acidity (<pH 4). This is usually prevented by coating the sensor with a gas-permeable, but ion-impermeable, membrane (GPM). Herein, we introduce a highly sensitive, colourimetric-based, plastic film sensor for the measurement of both gaseous and dissolved CO2, in which a pH-sensitive dye, thymol blue (TB) is coated onto particles of hydrophilic silica to create a CO2-sensitive, TB-based pigment, which is then extruded into low density polyethylene (LDPE) to create a GPM-free, i.e. naked, TB plastic sensor film for gaseous and dissolved CO2 measurements. When used for making dissolved CO2 measurements, the hydrophobic nature of the LDPE renders the film: (i) indifferent to ionic strength, (ii) highly resistant to acid attack and (iii) stable when stored under ambient (dark) conditions for >8 months, with no loss of colour or function. Here, the performance of the TB plastic film is primarily assessed as a dissolved CO2 sensor in highly saline (3.5 wt%) water. The TB film is blue in the absence of CO2 and yellow in its presence, exhibiting 50% transition in its colour at ca. 0.18% CO2. This new type of CO2 sensor has great potential in the monitoring of CO2 levels in the hydrosphere, as well as elsewhere, e.g. food packaging and possibly patient monitoring.