3 resultados para low-density lipoprotein receptor-related protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: A number of studies have demonstrated the presence of a diabetic cardiomyopathy, increasing the risk of heart failure development in this population. Improvements in present-day risk factor control may have modified the risk of diabetes-associated cardiomyopathy.

AIM: We sought to determine the contemporary impact of diabetes mellitus (DM) on the prevalence of cardiomyopathy in at-risk patients with and without adjustment for risk factor control.

DESIGN: A cross-sectional study in a population at risk for heart failure.

METHODS: Those with diabetes were compared to those with other cardiovascular risk factors, unmatched, matched for age and gender and then matched for age, gender, body mass index, systolic blood pressure and low density lipoprotein cholesterol.

RESULTS: In total, 1399 patients enrolled in the St Vincent's Screening to Prevent Heart Failure (STOP-HF) cohort were included. About 543 participants had an established history of DM. In the whole sample, Stage B heart failure (asymptomatic cardiomyopathy) was not found more frequently among the diabetic cohort compared to those without diabetes [113 (20.8%) vs. 154 (18.0%), P = 0.22], even when matched for age and gender. When controlling for these risk factors and risk factor control Stage B was found to be more prevalent in those with diabetes [88 (22.2%)] compared to those without diabetes [65 (16.4%), P = 0.048].

CONCLUSION: In this cohort of patients with established risk factors for Stage B heart failure superior risk factor management among the diabetic population appears to dilute the independent diabetic insult to left ventricular structure and function, underlining the importance and benefit of effective risk factor control in this population on cardiovascular outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL)
cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a
lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI
knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased
atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains
unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328
individuals with extremely high plasma HDL-C levels, we identified a homozygote for a lossof-function
variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene
encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and
abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells
derived from induced pluripotent stem cells from the homozygous subject, and in mice.
Large population-based studies revealed that subjects who are heterozygous carriers of
the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have
a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is
statistically significant).