6 resultados para loosely coupled networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbor coupling is no longer valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how preengineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cholecystokinin-1 receptor (CCK1R) mediates actions of CCK in areas of the central nervous system and of the gut. It is a potential target to treat a number of diseases. As for all G-protein-coupled receptors, docking of ligands into modeled CCK1R binding site should greatly help to understand intrinsic mechanisms of activation. Here, we describe the procedure we used to progressively build a structural model for the CCK1R, to integrated, and on the basis of site-directed mutagenesis data on its binding site. Reliability of the CCK1R model was confirmed by interaction networks that involved conserved and functionally crucial motifs in G-protein-coupled receptors, such as Glu/Asp-Arg-Tyr and Asn-Pro-Xaa-Xaa-Tyr motifs. In addition, the 3-D structure of CCK1R-bound CCK resembled that determined by NMR in a lipid environment. The derived computational model was also used for revealing binding modes of several nonpeptide ligands and for rationalizing ligand structure-activity relationships known from experiments. Our findings indeed support that our "validated CCK1R model" could be used to study the intrinsic mechanism of CCK1R activation and design new ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.