24 resultados para long duration transaction
Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies
Resumo:
We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M⊙) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z⊙, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.
Resumo:
To obtain enough quantity of osteogenic cells is a challenge for successful cell therapy in bone defect treatment, and cell numbers were usually achieved by culturing bone marrow cells in a relatively long duration. This study reported a simple and cost effective method to enhance the number of MSCs by collecting and replating the non-adherent cell population of marrow MSCs culture. Bone marrow MSCs were isolated from 11 patients, cultured at a density of 1×105/cm2 to 1×106/cm2 in flasks. For the first three times of media change, the floating cells were centrifuged and replated in separate flasks. The total number of cells in both the primary and replating flasks were counted at day 21. Cell proliferation rate, potentials for osteogenic, chondrognenic, and adipogenic differentiation were examined in both cell types in vitro. In-vivo osteogenic potentials of the cells were also tested in mice implantation model. The results showed that MSCs derived from non-adherent cell population of marrow cell cultures have similar cell proliferation and differentiation potentials as the originally attached MSCs in vitro. When implanted with HA-TCP materials subcutaneously in SCID mice, newly formed bony tissues were found in both cell type groups with osteocalcin expression. We have obtained 36.6% (20.70%-44.97%) more MSCs in the same culture period when the non-adherent cell populations were collected. The findings confirmed that the non-adherent cell population in the bone marrow culture is a complementary source of MSCs, collecting these cells is a simple and cost-effective way to increase MSCs numbers and reduce the time required for culturing MSCs for clinical applications.
Resumo:
The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.
Resumo:
Aims. Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Such events are predicted to be relatively common in the early Universe during the first episodes of star-formation. To understand these distant explosions it is vital to study nearby CCSNe arising in low-metallicity environments to determine if the explosions have different characteristics to those studied locally in high-metallicity galaxies. Many of the nearby supernova searches concentrate their efforts on high star-formation rate galaxies, hence biasing the discoveries to metal rich regimes. Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies.
Resumo:
The mid-Holocene decline of Tsuga canadensis (hereafter Tsuga) populations across eastern North America is widely perceived as a synchronous event, driven by pests/pathogens, rapid climate change, or both. Pattern identification and causal attribution are hampered by low stratigraphic density of pollen-sampling and radiometric dates at most sites, and by absence of highly resolved, paired pollen and paleoclimate records from single sediment cores, where chronological order of climatic and vegetational changes can be assessed. We present an intensely sampled (contiguous 1-cm intervals) record of pollen and water table depth (inferred from testate amoebae) from a single core spanning the Tsuga decline at Irwin Smith Bog in Lower Michigan, with high-precision chronology. We also present an intensively sampled pollen record from Tower Lake in Upper Michigan. Both sites show high-magnitude fluctuations in Tsuga pollen percentages during the pre-decline maximum. The terminal decline is dated at both sites ca. 5000 cal yr BP, some 400 years later than estimates from other sites and data compilations. The terminal Tsuga decline was evidently heterochronous across its range. A transient decline ca. 5350 cal yr BP at both sites may correspond to the terminal decline at other sites in eastern North America. At Irwin Smith Bog, the terminal Tsuga decline preceded an abrupt and persistent decline in water table depths by;200 years, suggesting the decline was not directly driven by abrupt climate change. The Tsuga decline may best be viewed as comprising at least three phases: a long-duration predecline maximum with high-magnitude and high-frequency fluctuations, followed by a terminal decline at individual sites, followed in turn by two millennia of persistently low Tsuga populations. These phases may not be causally linked, and may represent dynamics taking place at multiple temporal and spatial scales. Further progress toward understanding the phenomenon requires an expanded network of high-resolution pollen and paleoclimate chronologies.
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
Evaluation of pain in neonates is difficult due to their limited means of communication. The aim was to determine whether behavioural reactions of cry and facial activity provoked by an invasive procedure could be discriminated from responses to non-invasive tactile events. Thirty-six healthy full-term infants (mean age 2.2 h) received 3 procedures in counterbalanced order: intramuscular injection, application of triple dye to the umbilical stub, and rubbing thigh with alcohol. Significant effects of procedure were found for total face activity and latency to face movement. A cluster of facial actions comprised of brow bulging, eyes squeezed shut, deepening of the naso-labial furrow and open mouth was associated most frequently with the invasive procedure. Comparisons between the 2 non-invasive procedures showed more facial activity to thigh swabbing and least to application of triple dye to the umbilical cord. Acoustic analysis of cry showed statistically significant differences across procedures only for latency to cry and cry duration for the group as a whole. However, babies who cried to two procedures showed higher pitch and greater intensity to the injection. There were no significant differences in melody, dysphonation, or jitter. Methodological difficulties for investigators in this area were examined, including criteria for the selection of cries for analysis, and the logical and statistical challenges of contrasting cries induced by different conditions when some babies do not always cry. It was concluded that facial expression, in combination with short latency to onset of cry and long duration of first cry cycle typifies reaction to acute invasive procedures.
Resumo:
The purpose of this study was to define pathological abnormalities in the peripheral nerve of a large animal model of long-duration type 1 diabetes and also to determine the effects of treatment with sulindac. Detailed morphometric studies were performed to define nerve fiber and endoneurial capillary pathology in 6 control dogs, 6 type 1 diabetic dogs treated with insulin, and 6 type 1 diabetic dogs treated with insulin and sulindac for 4 years. Myelinated fiber and regenerative cluster density showed a non-significant trend toward a reduction in diabetic compared to control animals, which was prevented by treatment with sulindac. Unmyelinated fiber density did not differ among groups. However, diabetic animals showed a non-significant trend toward an increase in axon diameter (p <0.07), with a shift of the size frequency distribution towards larger axons, which was not prevented by treatment with sulindac. Endoneurial capillary density and luminal area showed a non-significant trend toward an increase in diabetic animals, which was prevented with sulindac treatment. Endoneurial capillary basement membrane area was significantly increased (p <0.05) in diabetic animals, but was not prevented with sulindac treatment. We conclude that the type 1 diabetic dog demonstrates minor structural abnormalities in the nerve fibers and endoneurial capillaries of the sciatic nerve, and treatment with sulindac ameliorates some but not all of these abnormalities.
Resumo:
We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes, and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching and measure physical and host-normalized offsets as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ([Sigma(SFR)] similar or equal to 0.1M(circle dot) yr(-1) kpc(-1)), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs; which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.
Resumo:
A framework for assessing the robustness of long-duration repetitive orchestrations in uncertain evolving environments is proposed. The model assumes that service-based evaluation environments are stable over short time-frames only; over longer periods service-based environments evolve as demand fluctuates and contention for shared resources varies. The behaviour of a short-duration orchestration E in a stable environment is assessed by an uncertainty profile U and a corresponding zero-sum angel-daemon game Γ(U) [2]. Here the angel-daemon approach is extended to assess evolving environments by means of a subfamily of stochastic games. These games are called strategy oblivious because their transition probabilities are strategy independent. It is shown that the value of a strategy oblivious stochastic game is well defined and that it can be computed by solving a linear system. Finally, the proposed stochastic framework is used to assess the evolution of the Gabrmn IT system.
Resumo:
We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ~4 days after explosion. The supernova (SN) had a peak luminosity, MR ≈ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si ≈ 19 × 103 km s-1 at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, M Ni = 0.9 M ⊙. Applying scaling relations to the light curve, we estimate a total ejecta mass, M ej ≈ 4.7 M ⊙, and total kinetic energy, EK ≈ 11 × 1051 erg. The ratio of M Ni to M ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E γ ~ 1048 erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters also play a key role.
Resumo:
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
Resumo:
We propose to observe the M8.5 dwarf SCR J1845-6357 with XMM-Newton EPIC for 60 ks. Very low-mass M dwarfs show a distinct drop in X-ray luminosity compared to slightly more massive M dwarfs. Surprisingly, this does not happen at the mass threshold where M dwarfs become fully convective (M4), but at significantly lower masses (M8). These very low mass stars seem to have a flaring behaviour different from earlier type stars: they display either occasional large flares or a very low-level "flickering" in their X-ray light curves, but not the canonical power-law flare-energy distribution observed for the Sun and other cool stars. Our aim is to collect a long-duration light curve for one of the most nearby ultracool dwarfs to quantify how its flare-energy distribution differs from earlier type stars.
Resumo:
Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion
Resumo:
The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge compared to transit observations because of their significantly longer durations. Using only a single mode, we propose to observe a full-orbit phase curve of one of the previously characterized, short-orbital-period planets to evaluate the facility-level aspects of long, uninterrupted time-series observations.