8 resultados para laser processing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, micro-joining of plastic parts to metal parts in medical devices is achieved by using medical adhesives, For example, pacemakers, defibrillators and neurological stimulators are designed using silicone adhesive to seal the joint between the polyurethane connector module and the titanium can [1]. Nevertheless, the use of adhesive is problematic because it requires a long time to cure and has high tendency to produce leachable products which might be harmful to the human body. An alternative for directly joining plastics to metal without adhesive is therefore required. Laser transmission joining (LTJ) is growing in importance, and has the potential to gain the niche in micro-fabrication of plastics-metal hybrid joints for medical device applications. The possibility of directly joining plastics to metal by LTJ technique have been demonstrated by a number of studies in recent literature [2]. The widely-accepted understanding of LTJ between plastics and metal is that generation and rapid expansion of micro-bubbles at the plastics-metal interface exert high local pressure to press the melted plastics towards the metal surface features during the laser processing [2]. This subsequently creates the plastics-metal hybrid joint by the mechanisms of mechanical interlocking as well as chemical and physical bonds between the plastics and metal surfaces. Although the micro-bubbles can help promote the mechanical interlocking effect to increase the joint strength, the creation of bubble is a random and complex process depending on the complicated interactions between the laser intensity, thermal degradation properties of plastics, surface temperature and topographical features of metal. In an ideal situation, it is desirable to create the hybrid plastics-metal joint without bubbles. However, the mechanical performance of the hybrid plastics-metal joint without bubbles is still unknown, and systematic comparison between the hybrid joints with and without bubbles is lacking in literature. This becomes the objective of this study. In this work, the laser process parameters were carefully chosen from a preliminary study, such that different hybrid joints: with and without bubbles can be produced and compared. Biocompatible PET and commercially pure Ti were selected as materials for laser joining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of harmonic generation in the interaction of short laser pulses with solid targets holds the promise for the production of intense attosecond pulses. Using the three dimensional code ILLUMINATION we have performed simulations pertaining to an experimentally realizable parameter range by high power laser systems to become available in the near future. The emphasis of the investigation is on the coherent nature of the emission. We studied the influence of the plasma scale length on the harmonic efficiency, angular distribution and the focusability using a post processing scheme in which the far-field of the emission is calculated. It is found that the presence of an extended density profile reduces significantly the transverse coherence length of the emitted XUV light. The different stages of the interaction for two particular cases can be followed with the help of movies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sputtered silicon is investigated as a bonding layer for transfer of pre-processed silicon layers to various insulating substrates. Although the material appears suitable for low temperature processing, previous work has shown that gas trapped in the pores of the sputtered material is released at temperatures above 350 degrees C and further increases of temperature lead to destruction of any bonded interface. Pre-annealing at 1000 degrees C before bonding drives out gas and/or seals the surface, but for device applications where processing temperatures must be kept below about 300 degrees C, this technique cannot be used. In the current work, we have investigated the effect of excimer laser-annealing to heat the sputtered silicon surface to high temperature whilst minimising heating of the underlying substrate. Temperature profile simulations are presented and the results of RBS, TEM and AFM used to characterise the annealed layers. The results verify that gases are present in the sub-surface layers and suggest that while sealing of the surface is important for suppression of the out-diffusion of gases, immediate surface gas removal may also play a role. The laser-annealing technique appears to be an effective method of treating sputtered silicon, yielding a low roughness surface suitable for wafer bonding, thermal splitting and layer transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-dimensional laser-plasma-interaction hydrodynamic code POLLUX has been used to simulate the ablation of a magnesium target by a 30-ns, 248-nm KrF excimer laser at low laser fluences of ≤10 J cm2. This code, originally written for much higher laser intensities, has been recently extended to include a detailed description of the equation of state in order to treat changes of phase within the target material, and also includes a Thomas Fermi description of the electrons. The simulated temporal and spatial evolution of the plasma plume in the early phase of the expansion (≤100 ns) is compared with experimental interferometric measurements of electron density. The expansion dynamics are in good agreement, although the simulated electron number density is about 2.5 times higher than the experimental values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t <EQ 100 ns) interferometry has been used to obtain line averaged electron number densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) <EQ t <EQ 15 microsecond(s) ). A copper target was ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.