248 resultados para laser ion source


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific target configuration and laser parameters, more than 109 negative ions per steradian solid angle in 5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue of the ultra-short duration of the emission, this is by far the brightest negative ion source reported. The data also indicate the existence of beams of neutrals with at least similar numbers and energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid ethanol (C2H5OH) was used to generate a spray of sub-micron droplets. Sprays with different nozzle geometries have been tested and characterised using Mie scattering to find scaling properties and to generate droplets with different diameters within the spray. Nozzles having throat diameters of 470 µm and 560 µm showed generation of ethanol spray with droplet diameters of (180 ± 10) nm and (140 ± 10) nm, respectively. These investigations were motivated by the observation of copious negative ions from these target systems, e.g., negative oxygen and carbon ions measured from water and ethanol sprays irradiated with ultra-intense (5 × 1019 W/cm2), ultra short (40 fs) laser pulses. It is shown that the droplet diameter and the average atomic density of the spray have a significant effect on the numbers and energies of accelerated ions, both positive and negative. These targets open new possibilities for the creation of efficient and compact sources of different negative ion species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma parameters and relative positive and negative ion concentrations in a small, filtered, multicusp ion source, operating at low plasma density (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical electron energy distribution functions (EEDFS) measured in and calculated for the driver of a multicusp ion source operating in hydrogen are compared. The results show that atomic physics based theoretical models can accurately predict the EEDF in such discharges if some appropriate experimentally determined quantities are used as input parameters. The magnitude and shape of the EEDF is found to be particularly sensitive to the effective surface area to volume ratio for electrons.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments on laser-induced ion acceleration from ultra-thin (nm) foil targets reveal a dramatic increase in the conversion efficiency and the acceleration of C6$+$ions in a phase stable way by the laser radiation pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projected scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.