4 resultados para laser driver


Relevância:

100.00% 100.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal development of laser driven single mode perturbations in thin A1 foils has been measured using extreme ultraviolet (XUV) laser radiography. 15, 30, 70 and 90 mu m single modes were imprinted on 2 mu m thick A1 foils with an optical driver laser at 527 nm for intensities in the range 5 x 10(12) to 1.5 x 10(13) W cm(-2). The magnitude of the imprinted perturbation at the time of shock break out was determined by fitting to the data estimated curves of growth of the Rayleigh-Taylor instability after shock break out. The efficiency of imprinting is independent of perturbation wavelength in the parameter range of this experiment, suggesting little influence of thermal conduction smoothing. The results are of interest for directly driven inertially confined fusion. (C) 1998 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeVover millimeter length scales. By adding a second gas target behind the initial LWFAstage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.