6 resultados para lanthanides
Resumo:
In this paper we demonstrate that the effect of aromatic C-F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di-(pentafluorophinoyl)}-P,P-dipentafluoro-phenylphosphinimidic acid (HF(20)tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X-H vibrations that quench lanthanide emission. The synthesis, full characterisation including X-ray and NMR analysis as well as the photophysical properties of the emissive complexes [Ln(F(20)tpip)(3)], in which Ln=Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Y, Gd, are reported. The photophysical results contrast previous studies, in which fluorination of alkyl chains tends to lead to more emissive lanthanide complexes for both visible and NIR emission. Analysis of the fluorescence properties of the HF(20)tpip and [Gd(F(20)tpip)(3)] reveals that there is a low-lying state at around 715 nm that is responsible for partially quenching of the signal of the visible emitting lanthanides and we attribute it to a pi-sigma* state. However, all visible emitting lanthanides have long lifetimes and unexpectedly the [Dy(F(20)tpip)(3)] complex shows a lifetime of 0.3 ms, indicating that the elimination of high-energy vibrations from the ligand framework is particularly favourable for Dy. The NIR emitting lanthanides show strong emission signals in powder and solution with unprecedented lifetimes. The luminescence lifetimes of [Nd(F(20)tpip)(3)], [Er(F(20)tpip)(3)] and [Yb(F(20)tpip)(3)] in deuteurated acetonitrile are 44, 741 and 1111 mu s. The highest value observed for the [Yb(F(20)tpip)(3)] complex is more than half the value of the Yb ion radiative lifetime.
Resumo:
The 9-hydroxyphenal-1-one ligand forms stable 3 : 1 complexes with trivalent lanthanides, in which it acts as an antenna suitable for the visible light excitation ( up to 475 nm) of the trivalent europium ion.
Resumo:
Lanthanide(III) complexes of p-nitrobenzenesulfonic acid, Ln(p-NBSA)(3), m-nitrobenzenesulfonic acid, Ln(m-NBSA)(3), and 2,4-nitrobenzenesulfonic acid, Ln(2,4-NBSA)(3), were prepared, characterized and examined as catalyst for the nitration of benzene, toluene, xylenes, naphthalene, bromobenzene and chlorobenzene. The initial screening of the catalysts showed that lanthanum(III) complexes were more effective than the corresponding ytterbium(III) complexes, and that catalysts containing the bulky 2,4-NBSA ligand were less effective than the catalyst containing p-NBSA (nosylate) or m-NBSA ligands. Examination of a series of Ln(p-NBSA)(3) and Ln(m-NBSA)(3) catalysts revealed that there is a clear correlation between the ionic radii of the lanthanide(III) ions and the yields of nitration, with the lighter lanthanides being more effective. The X-ray single crystal structure of Yb(m-NBSA)(3).6H(2)O shows that two m-NBSA ligands are directly bound to the metal centre while the third ligand is not located in the first coordination sphere, but it is hydrogen bonded to one of the water molecules which is coordinated to ytterbium(III). NMR studies suggest that this structure is preserved under the conditions used in the nitration reaction. The structure of Yb(m-NBSA)(3) is markedly different from the structure of the well-known ytterbium(III) triflate catalyst. The coordination of the nitrobenzenesulfonate counterion to the lanthanide(III) ion suggests that steric effects might play an important role in determining the efficiency of these novel nitration catalysts. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
Resumo:
Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor- based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro- and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetisation vs. temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment FCC layer at the seed interface topped with a higher moment HCP layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetisation was found to drop with increasing unit cell size. In-situ annealed rare earth films exceeded the saturation magnetisation of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetisation and operating temperature.
Resumo:
This paper describes a novel doped titania immobilised thin film multi tubular photoreactor which has been developed for use with liquid, vapour or gas phase media. In designing photocatalytic reactors measuring active surface area of photocatalyst within the unit is one of the critical design parameters. This dictate greatly limits the applicability of any semi-conductor photocatalyst in industrial applications, as a large surface area equates to a powder catalyst. This demonstration of a thin film coating, doped with a rare earth element, novel photoreactor design produces a photocatalytic degradation of a model pollutant (methyl orange) which displayed a comparable degradation achieved with P25 TiO2. The use of lanthanide doping is reported here in the titania sol gel as it is thought to increase the electron hole separation therefore widening the potential useful wavelengths within the electromagnetic spectrum. Increasing doping from 0.5% to 1.0% increased photocatalytic degradation by ∼17% under visible irradiation. A linear relationship has been seen between increasing reactor volume and degradation which would not normally be observed in a typical suspended reactor system. © 2012 Elsevier B.V.