187 resultados para laboratory analogues
Resumo:
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
Resumo:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Resumo:
Peptides are receiving increasing interest as clinical therapeutics. These highly tunable molecules can be tailored to biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. Despite challenges regarding up-scaling and licensing of peptide products, their vast clinical potential is reflected in the 60 plus peptide-based therapeutics already on the market, and the further 500 derivatives currently in developmental stages. Peptides are proving effective for a multitude of disease states including: type 2 diabetes (controlled using the licensed glucagon-like peptide-1 receptor liraglutide); irritable bowel syndrome managed with linaclotide (currently at approval stages); acromegaly (treated with octapeptide somostatin analogues lanreotide and octreotide); selective or broad spectrum microbicidal agents such as the Gram-positive selective PTP-7 and antifungal heliomicin; anticancer agents including goserelin used as either adjuvant or for prostate and breast cancer,and the first marketed peptide derived vaccine against prostate cancer, sipuleucel-T. Research is also focusing on improving the biostability of peptides. This is achieved through a number of mechanisms ranging from replacement of naturally occurring L-amino acid enantiomers with D-amino acid forms, lipidation, peptidomimetics, N-methylation, cyclization and exploitation of carrier systems. The development of self-assembling peptides are paving the way for sustained release peptide formulations and already two such licensed examples exist, lanreotide and octreotide. The versatility and tunability of peptide-based products is resulting in increased translation of peptide therapies, however significant challenges remain with regard to their wider implementation. This review highlights some of the notable peptide therapeutics discovered to date and the difficulties encountered by the pharmaceutica lindustry in translating these molecules to the clinical setting for patient benefit, providing some possible solutions to the most challenging barriers.
Resumo:
Physiological studies on M. parvicella have been conducted to determine the rate of growth of this organism in pure culture. The organism displayed a doubling time of 128 days despite its profuse abundance in a local Wastewater Treatment Plant (WWTW). An extensive survey has been ongoing since February 2000 into the extent of M. parvicella in the WWTW. A suite of monoclonal and polyclonal antibodies has been developed to detect and quantify M. parvicella.
Resumo:
Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(LyS(37)PAL) and N-AcGIP(LyS(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25 nmol kg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(LyS(37)PAL) or N-AcGIP(LyS37PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a physiological insulin releasing peptide. We have developed two novel fatty acid derivatized GIP analogues, which bind to serum albumin and demonstrate enhanced duration of action in vivo. GIP(Lys(16)PAL) and GIP(Lys(37)PAL) were resistant to dipeptidyl peptidase IV (DPP IV) degradation. In vitro studies demonstrated that GIP analogues retained their ability to activate the GIP receptor through production of cAMP and to stimulate insulin secretion. Intraperitoneal administration of GIP analogues to obese diabetic (ob/ob) mice significantly decreased the glycemic excursion and elicited increased and prolonged insulin responses compared to native GIP. A protracted glucose-lowering effect was observed 24 h following GIP(LyS(37)PAL) administration. Once a day injection for 14 days decreased nonfasting glucose, improved glucose tolerance, and enhanced the insulin response to glucose. These data demonstrate that fatty acid derivatized GIP peptides represent a novel class of long-acting stable GIP analogues for therapy of type 2 diabetes.