29 resultados para knowledge network


Relevância:

40.00% 40.00%

Publicador:

Resumo:

How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (similar to 25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network based tool has been developed to assist in the process of code transformation. The tool offers advice on appropriate transformations within a knowledge-driven, semi-automatic parallelisation environment. We have identified the essential characteristics of codes relevant to loop transformations. A Kohonen network is used to discover structure in the characterised codes thus revealing new knowledge that may be brought to bear on the mapping between codes and transformations or transformation sequences. A transform selector based on this process has been developed and successfully applied to the parallelisation of sequential codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-scale metabolic models promise important insights into cell function. However, the definition of pathways and functional network modules within these models, and in the biochemical literature in general, is often based on intuitive reasoning. Although mathematical methods have been proposed to identify modules, which are defined as groups of reactions with correlated fluxes, there is a need for experimental verification. We show here that multivariate statistical analysis of the NMR-derived intra- and extracellular metabolite profiles of single-gene deletion mutants in specific metabolic pathways in the yeast Saccharomyces cerevisiae identified outliers whose profiles were markedly different from those of the other mutants in their respective pathways. Application of flux coupling analysis to a metabolic model of this yeast showed that the deleted gene in an outlying mutant encoded an enzyme that was not part of the same functional network module as the other enzymes in the pathway. We suggest that metabolomic methods such as this, which do not require any knowledge of how a gene deletion might perturb the metabolic network, provide an empirical method for validating and ultimately refining the predicted network structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: The inference of regulatory networks from large-scale expression data holds great promise because of the potentially causal interpretation of these networks. However, due to the difficulty to establish reliable methods based on observational data there is so far only incomplete knowledge about possibilities and limitations of such inference methods in this context.

Results: In this article, we conduct a statistical analysis investigating differences and similarities of four network inference algorithms, ARACNE, CLR, MRNET and RN, with respect to local network-based measures. We employ ensemble methods allowing to assess the inferability down to the level of individual edges. Our analysis reveals the bias of these inference methods with respect to the inference of various network components and, hence, provides guidance in the interpretation of inferred regulatory networks from expression data. Further, as application we predict the total number of regulatory interactions in human B cells and hypothesize about the role of Myc and its targets regarding molecular information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors identify a number of drivers of supply network governance, a widely appraised governance form aimed at reaping the benefits of both vertical integration and market exchange. Case studies conducted in the Dutch chemical industry are used to explore these drivers. The findings identify interdependence of organizational activities and asset-specific investments as the key drivers of supply network governance in the chemical industry. Firms enjoy relational rents and tend to share knowledge in supply network relationships, however these factors seem to strengthen supply network relationships rather than create them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this preliminary case study, we investigate how inconsistency in a network intrusion detection rule set can be measured. To achieve this, we first examine the structure of these rules which incorporate regular expression (Regex) pattern matching. We then identify primitive elements in these rules in order to translate the rules into their (equivalent) logical forms and to establish connections between them. Additional rules from background knowledge are also introduced to make the correlations among rules more explicit. Finally, we measure the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley inconsistency values and Blame measure for prioritized knowledge) and compare the informativeness of these measures. We conclude that such measures are useful for the network intrusion domain assuming that incorporating domain knowledge for correlation of rules is feasible.