110 resultados para kidney ischemia
Resumo:
Background: We investigated the incidence of chronic kidney disease (CKD) in the United Kingdom heart transplant population, identified risk factors for the development of CKD, and assessed the impact of CKD on subsequent survival.
Methods: Data from the UK Cardiothoracic Transplant Audit and UK Renal Registry were linked for 1732 adult heart transplantations, 1996 to 2007. Factors influencing time to CKD, defined as National Kidney Foundation CKD stage 4 or 5 or preemptive kidney transplantation, were identified using a Cox proportional hazards model. The effects of distinct CKD stages on survival were evaluated using time-dependent covariates.
Results: A total of 3% of patients had CKD at transplantation, 11% at 1-year and more than 15% at 6 years posttransplantation and beyond. Earlier transplantations, shorter ischemia times, female, older, hepatitis C virus positive, and diabetic recipients were at increased risk of developing CKD, along with those with impaired renal function pretransplantation or early posttransplantation. Significant differences between transplantation centers were also observed. The risk of death was significantly higher for patients at CKD stage 4, stage 5 (excluding dialysis), or on dialysis, compared with equivalent patients surviving to the same time point with CKD stage 3 or lower (hazard ratios of 1.66, 8.54, and 4.07, respectively).
Conclusions: CKD is a common complication of heart transplantation in the UK, and several risk factors identified in other studies are also relevant in this population. By linking national heart transplantation and renal data, we have determined the impact of CKD stage and dialysis treatment on subsequent survival in heart transplant recipients.
Resumo:
Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.
Resumo:
The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.
Resumo:
Objective: Prolonged limb ischemia followed by reperfusion (I/R) is associated with a systemic inflammatory response syndrome and remote acute lung injury. Ischemic preconditioning (IPC), achieved with repeated brief periods of I/R before the prolonged ischemic period, has been shown to protect skeletal muscle against ischemic injury. The aim of this study was to ascertain whether IPC of the limb before I/R injury also attenuates systemic inflammation and acute lung injury in a fully resuscitated porcine model of hind limb I/R. Methods: This prospective, randomized, controlled, experimental animal study was performed in a university-based animal research facility with 18 male Landrace pigs that weighed from 30 to 35 kg. Anesthetized ventilated swine were randomized (n = 6 per group) to three groups: sham-operated control group, I/R group (2 hours of bilateral hind limb ischemia and 2.5 hours of reperfusion), and IPC group (three cycles of 5 minutes of ischemia/5 minutes of reperfusion immediately preceding I/R). Plasma was separated and stored at -70° C for later determination of plasma tumor necrosis factor-a and interleukin-6 with bioassay as markers of systemic inflammation. Circulating phagocytic cell priming was assessed with a whole blood chemiluminescence assay. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were markers of edema and neutrophil sequestration, respectively. The alveolar-arterial oxygen gradient and pulmonary artery pressure were indices of lung function. Results: In a porcine model, bilateral hind limb (I/R) injury significantly increased plasma interleukin-6 concentrations, circulating phagocytic cell priming, and pulmonary leukosequestration, edema, and impaired gas exchange. Conversely, pigs treated with IPC before the onset of the ischemic period had significantly reduced interleukin-6 levels, circulating phagocytic cell priming, and experienced significantly less pulmonary edema, leukosequestration, and respiratory failure. Conclusion: Lower limb IPC protects against systemic inflammation and acute lung injury in lower limb I/R injury.
Resumo:
OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI21) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI21 is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI21 at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at -70 degrees C for later determination of plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar-arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI21 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI21 ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome.
Resumo:
Sedatives and tranquillisers are frequently used to reduce stress during the transportation of food producing animals. The most widely used classes of sedatives include the butyrophenone azaperone, the phenothiazines acepromazine, propionylpromazine, chlorpromazine and the beta-blocker, carazolol. For regulatory control purposes, tolerances for azaperone and carazolol have been set by the European Union as 100 and 25 mug kg(-1), respectively. Furthermore, the use of the phenothiazines is prohibited and therefore has a zero tolerance. A method for the detection of residues of five tranquillisers and one beta-blocker using a single ELISA plate has been developed. Kidney samples (2.5 g) were extracted with dichloromethane and applied to a competitive enzyme immunoassay using three polyclonal antibodies raised in rabbits against azaperol, propionylpromazine and carazolol conjugates. In sample matrix, the azaperol antibody cross-reacted 28.0% with azaperone and the propionylpromazine antibody cross-reacted 24.9% with acepromazine and 11.7% with chlorpromazine. In the ELISA, the detection capabilities of the six sedatives, azaperol, azaperone, carazolol, acepromazine, chlorpromazine, and propionylpromazine are 5, 15, 5, 5, 20 and 5 mug kg(-1), respectively. The proposed method is a sensitive and rapid multi-residue technique that offers a cost effective alternative to current published procedures, without any concession on the ability to detect sedative misuse.
Resumo:
Background. Kidney Disease Outcomes Quality Initiative (KDOQI) chronic kidney disease (CKD) guidelines have focused on the utility of using the modified four-variable MDRD equation (now traceable by isotope dilution mass spectrometry IDMS) in calculating estimated glomerular filtration rates (eGFRs). This study assesses the practical implications of eGFR correction equations on the range of creatinine assays currently used in the UK and further investigates the effect of these equations on the calculated prevalence of CKD in one UK region Methods. Using simulation, a range of creatinine data (30–300 µmol/l) was generated for male and female patients aged 20–100 years. The maximum differences between the IDMS and MDRD equations for all 14 UK laboratory techniques for serum creatinine measurement were explored with an average of individual eGFRs calculated according to MDRD and IDMS 30 ml/min/1.73 m2. Observed data for 93,870 patients yielded a first MDRD eGFR 3 months later of which 47 093 (71%) continued to have an eGFR
Resumo:
Background: Haem oxygenase-1 (HO-1) is a cytoprotective molecule that is reported to have a protective role in a variety of experimental models of renal injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates HO-1 gene expression; a short number of repeats (S-allele <25) increases transcription. We report the first assessment of the role of this HO-1 gene promoter polymorphism in chronic kidney disease due to autosomal dominant polycystic kidney disease (ADPKD) and IgA nephropathy (IgAN).
Methods: The DNA from 160 patients (99% Caucasian) on renal replacement therapy (RRT) was genotyped. The primary renal disease was ADPKD in 100 patients and biopsy-proven IgAN in 60 patients.
Results: Overall, the mean age at commencement of RRT was not significantly different between patients with and without an S-allele (44.1 years versus 45.0 years, P = 0.64). In patients with ADPKD, the age at commencement of RRT was comparable regardless of the HO-1 genotype (47.7 years versus 46.7 years, P = 0.59). The same was true in patients with IgAN (38.3 years versus 42.2 years, P = 0.28).
Conclusion: This suggests that the functional HO-1 promoter polymorphism does not influence renal survival in CKD due to ADPKD or IgAN.