16 resultados para iterated local search


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental results on benchmark problems in 3D cubic lattice structures with the Miyazawa-Jernigan energy function for two local search procedures that utilise the pull-move set: (i) population-based local search (PLS) that traverses the energy landscape with greedy steps towards (potential) local minima followed by upward steps up to a certain level of the objective function; (ii) simulated annealing with a logarithmic cooling schedule (LSA). The parameter settings for PLS are derived from short LSA-runs executed in pre-processing and the procedure utilises tabu lists generated for each member of the population. In terms of the total number of energy function evaluations both methods perform equally well, however. PLS has the potential of being parallelised with an expected speed-up in the region of the population size. Furthermore, both methods require a significant smaller number of function evaluations when compared to Monte Carlo simulations with kink-jump moves. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss necessary as well as sufficient conditions for the second iterated local multiplier algebra of a separable C*-algebra to agree with the first.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A standard problem within universities is that of teaching space allocation which can be thought of as the assignment of rooms and times to various teaching activities. The focus is usually on courses that are expected to fit into one room. However, it can also happen that the course will need to be broken up, or ‘split’, into multiple sections. A lecture might be too large to fit into any one room. Another common example is that of seminars or tutorials. Although hundreds of students may be enrolled on a course, it is often subdivided into particular types and sizes of events dependent on the pedagogic requirements of that particular course. Typically, decisions as to how to split courses need to be made within the context of limited space requirements. Institutions do not have an unlimited number of teaching rooms, and need to effectively use those that they do have. The efficiency of space usage is usually measured by the overall ‘utilisation’ which is basically the fraction of the available seat-hours that are actually used. A multi-objective optimisation problem naturally arises; with a trade-off between satisfying preferences on splitting, a desire to increase utilisation, and also to satisfy other constraints such as those based on event location and timetabling conflicts. In this paper, we explore such trade-offs. The explorations themselves are based on a local search method that attempts to optimise the space utilisation by means of a ‘dynamic splitting’ strategy. The local moves are designed to improve utilisation and satisfy the other constraints, but are also allowed to split, and un-split, courses so as to simultaneously meet the splitting objectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nurse rostering is a difficult search problem with many constraints. In the literature, a number of approaches have been investigated including penalty function methods to tackle these constraints within genetic algorithm frameworks. In this paper, we investigate an extension of a previously proposed stochastic ranking method, which has demonstrated superior performance to other constraint handling techniques when tested against a set of constrained optimisation benchmark problems. An initial experiment on nurse rostering problems demonstrates that the stochastic ranking method is better in finding feasible solutions but fails to obtain good results with regard to the objective function. To improve the performance of the algorithm, we hybridise it with a recently proposed simulated annealing hyper-heuristic within a local search and genetic algorithm framework. The hybrid algorithm shows significant improvement over both the genetic algorithm with stochastic ranking and the simulated annealing hyper-heuristic alone. The hybrid algorithm also considerably outperforms the methods in the literature which have the previously best known results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new C*-enlargement of a C*-algebra A nested between the local multiplier algebra of A and its injective envelope is introduced. Various aspects of this maximal C*-algebra of quotients are studied, notably in the setting of AW*-algebras. As a by-product we obtain a new example of a type I C*-algebra such that its second iterated local multiplier algebra is strictly larger than its local multiplier algebra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel approach for the multi-objective design optimisation of aerofoil profiles is presented. The proposed method aims to exploit the relative strengths of global and local optimisation algorithms, whilst using surrogate models to limit the number of computationally expensive CFD simulations required. The local search stage utilises a re-parameterisation scheme that increases the flexibility of the geometry description by iteratively increasing the number of design variables, enabling superior designs to be generated with minimal user intervention. Capability of the algorithm is demonstrated via the conceptual design of aerofoil sections for use on a lightweight laminar flow business jet. The design case is formulated to account for take-off performance while reducing sensitivity to leading edge contamination. The algorithm successfully manipulates boundary layer transition location to provide a potential set of aerofoils that represent the trade-offs between drag at cruise and climb conditions in the presence of a challenging constraint set. Variations in the underlying flow physics between Pareto-optimal aerofoils are examined to aid understanding of the mechanisms that drive the trade-offs in objective functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inferences in directed acyclic graphs associated with probability intervals and sets of probabilities are NP-hard, even for polytrees. We propose: 1) an improvement on Tessem’s A/R algorithm for inferences on polytrees associated with probability intervals; 2) a new algorithm for approximate inferences based on local search; 3) branch-and-bound algorithms that combine the previous techniques. The first two algorithms produce complementary approximate solutions, while branch-and-bound procedures can generate either exact or approximate solutions. We report improvements on existing techniques for inference with probability sets and intervals, in some cases reducing computational effort by several orders of magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the application of an automated hybrid approach in addressing the university timetabling problem. The approach described is based on the nature-inspired artificial bee colony (ABC) algorithm. An ABC algorithm is a biologically-inspired optimization approach, which has been widely implemented in solving a range of optimization problems in recent years such as job shop scheduling and machine timetabling problems. Although the approach has proven to be robust across a range of problems, it is acknowledged within the literature that there currently exist a number of inefficiencies regarding the exploration and exploitation abilities. These inefficiencies can often lead to a slow convergence speed within the search process. Hence, this paper introduces a variant of the algorithm which utilizes a global best model inspired from particle swarm optimization to enhance the global exploration ability while hybridizing with the great deluge (GD) algorithm in order to improve the local exploitation ability. Using this approach, an effective balance between exploration and exploitation is attained. In addition, a traditional local search approach is incorporated within the GD algorithm with the aim of further enhancing the performance of the overall hybrid method. To evaluate the performance of the proposed approach, two diverse university timetabling datasets are investigated, i.e., Carter's examination timetabling and Socha course timetabling datasets. It should be noted that both problems have differing complexity and different solution landscapes. Experimental results demonstrate that the proposed method is capable of producing high quality solutions across both these benchmark problems, showing a good degree of generality in the approach. Moreover, the proposed method produces best results on some instances as compared with other approaches presented in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work applies a hybrid approach in solving the university curriculum-based course timetabling problem as presented as part of the 2nd International Timetabling Competition 2007 (ITC2007). The core of the hybrid approach is based on an artificial bee colony algorithm. Past methods have applied artificial bee colony algorithms to university timetabling problems with high degrees of success. Nevertheless, there exist inefficiencies in the associated search abilities in term of exploration and exploitation. To improve the search abilities, this work introduces a hybrid approach entitled nelder-mead great deluge artificial bee colony algorithm (NMGD-ABC) where it combined additional positive elements of particle swarm optimization and great deluge algorithm. In addition, nelder-mead local search is incorporated into the great deluge algorithm to further enhance the performance of the resulting method. The proposed method is tested on curriculum-based course timetabling as presented in the ITC2007. Experimental results reveal that the proposed method is capable of producing competitive results as compared with the other approaches described in literature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of the search of the periodic changes of the 530.3 nm line intensity emitted by selected structures of the solar corona in the frequency range 1-10 Hz are presented. A set of 12 728 images of the section of the solar corona extending from near the north pole to the south-west were taken simultaneously in the 530.3 nm ("green") line and white-light with the Solar Eclipse Coronal Imaging System (SECIS) during the 143-seconds- long totality of the 1999 August 11 solar eclipse observed in Shabla, Bulgaria. The time resolution of the collected data is better than 0.05 s and the pixel size is approximately 4 arcsec. Using classical Fourier spectral analysis tools, we investigated temporal changes of the local 530.3 nm coronal line brightness in the frequency range 1-10 Hz of thousands of points within the field of view. The various photometric and instrumental effects have been extensively considered. We did not find any indisputable, statistically significant evidence of periodicities in any of the investigated points (at significance level alpha = 0.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A search for a submerged jet ski and the lost limb of its driver involved in a collision with a speedboat was made in a shallow lake in Northern Ireland. The location of both was crucial to establishing events at the time of the accident. Local intelligence suggested both objects were likely to be partially-buried by lacustrine silt. To avoid sediment churning, this required non-invasive, completely non-destructive assessment and mapping of the scene. A MALA RAMAC ground-penetrating radar system (GPR) mounted on floats for surveying from walkways and jetties or placed in a small rubber dinghy for offshore profiling was used. A grid was established and each line surveyed with 100, 200 and 400MHz antennae. In waters over 6m deep GPR data showed the form of the lake floor but excessive ringing occurred in the data. In waters less than 6m deep ringing diminished on both 100 and 200MHz data, the latter displaying the best trade-off between depth penetration and horizontal object resolution. 400MHz data failed to be of use in waters over 2m deep and at these depths showed only limited improvement of image quality compared to 200MHz data. Surface objects such as a wooden walkway caused interference on 200 and 400MHz data when antennae were oriented both normal and parallel to survey direction; this may be a function of the low attenuation of radar waves in freshwater, allowing excellent lateral and vertical radar wave penetration. On 200MHz data the damaged jet-ski was clearly imaged in a location that contradicted the speedboat driver's account of the accident.