85 resultados para isolation-by-distance
Resumo:
Expectations of migration and mobility steadily increasing in the longer term, which have a long currency in migration theory and related social science, are at odds with the latest US research showing a marked decline in internal migration rates. This paper reports the results of research that investigates whether England and Wales have experienced any similar change in recent decades. Using the Office for National Statistics Longitudinal Study (ONS-LS) of linked census records, it examines the evidence provided by its 10-year migration indicator, with particular attention to a comparison of the first and latest decades available, 1971-1981 and 2001-2011. This suggests that, as in the USA, there has been a marked reduction in the level of shorter-distance (less than 10km) moving that has involved almost all types of people. In contrast to this and to US experience, however, the propensity of people to make longer-distance address changes between decennial censuses has declined much less, largely corroborating the results of a companion study tracking the annual trend in rates of between-area migration since the 1970s (Champion and Shuttleworth, 2016).
Resumo:
We have investigated levels of genetic diversity within and among seven remnant populations of Caesalpinia echinata Lam., an endangered species found as fragmented populations in three major areas around the coastal regions of Brazil. Using amplified fragment length polymorphism (AFLP) genetic markers, we detected levels of within-population genetic diversity ranging from 0.092 to 0.163, with the lowest values generally being found in the smallest populations. Estimates of between-population genetic differentiation were strongly correlated with geographical distance ( r = 0.884, p <0.001), which, along with a neighbour-joining phylogenetic analysis, strongly suggested high levels of genetic isolation by distance. Over half (62%) of the total genetic diversity was partitioned between populations, further highlighting the genetic distinctness of individual populations. Taken together, these results suggest that fragmentation has led to an increase in population differentiation between fragments of C. echinata. These formations will be of great value in the development of conservation plans for species exhibiting high levels of genetic differentiation due to fragmentation, such as indication of conservation unit size, which populations should be chosen as priority in conservation plans and which samples should be introduced in areas with a low number of individuals of brazilwood.
Resumo:
A north/south discontinuity along the northeastern coast of North America in the genetic structure of the American lobster (Homarus americanus) was detected using a suite of 13 microsatellite loci assessed using spatial analyses. Population genetic data laid over existing data on physiographic changes and sea-surface temperatures were used to reconstruct the Pleistocene distribution of this species. A postglacial northern-edge colonization model best explains the relative genetic homogeneity of the northern region compared to the southern region centred in the Gulf of Maine. Population genetic analyses identified significant structure (range of standardized theta 0-0.02) but no significant evidence for isolation by distance. The novel application of spatial genetic analyses to a marine species allowed us to interpret these results by providing a greater insight into the evolutionary factors responsible for shaping the genetic structure of this species throughout is natural range.
Resumo:
A conservation priority in the marine environment is the establishment of ecologically coherent reserve networks. Since these networks will integrate existent reserves, an understanding of spatial genetic diversity and genetic connectivities between areas is necessary. Using Strangford Lough marine nature reserve (MNR) as a model, spatial genetic analyses were employed to evaluate the function of the lough. Samples of the marine gastropod Nucella lapillus (L.) from 7 locations in the reserve and adjacent areas were screened at 6 microsatellites. Genetic variation was temporally stable. Significant genetic structuring (F-ST = 0.133) was observed among samples. Genetic divergence and isolation by distance indicated reduced gene flow between the marine reserve and coastal samples relative to that between adjacent coastal samples. Partitioning of genetic variation between the reserve and coast was significant (AMOVA, 7.45%, p
Resumo:
Globally there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus FST was up to 0.53, and G’ST and Dest were even higher (maximum: 0.85 and 1.00 respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. Colletes floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.
Resumo:
Eusociality is widely considered a major evolutionary transition. The socially polymorphic sweat bee Halictus rubicundus, solitary in cooler regions of its holarctic range and eusocial in warmer parts, is an excellent model organism to address this transition, and specifically the question of whether sociality is associated with a strong barrier to gene flow between phenotypically divergent populations. Mitochondrial DNA (COI) from specimens collected across the British Isles, where both solitary and social phenotypes are represented, displayed limited variation, but placed all specimens in the same European lineage; haplotype network analysis failed to differentiate solitary and social lineages. Microsatellite genetic variability was high and enabled us to quantify genetic differentiation among populations and social phenotypes across Great Britain and Ireland. Results from conceptually different analyses consistently showed greater genetic differentiation between geographically distant populations, independently of their social phenotype, suggesting that the two social forms are not reproductively isolated. A landscape genetic approach revealed significant isolation by distance (Mantel test r = 0.622, p
Resumo:
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non-model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation-by-distance was observed across scales from a few hundred metres to approximately 200?km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short- and long-term natural processes, as well as anthropogenic influence.
Resumo:
Little is known about the microevolutionary processes shaping within river population genetic structure of aquatic organisms characterized by high levels of homing and spawning site fidelity. Using a microsatellite panel, we observed complex and highly significant levels of intrariver population genetic substructure and Isolation-by-Distance, in the Atlantic salmon stock of a large river system. Two evolutionary models have been considered explaining mechanisms promoting genetic substructuring in Atlantic salmon, the member-vagrant and metapopulation models. We show that both models can be simultaneously used to explain patterns and levels of population structuring within the Foyle system. We show that anthropogenic factors have had a large influence on contemporary population structure observed. In an analytical development, we found that the frequently used estimator of genetic differentiation, F-ST, routinely underestimated genetic differentiation by a factor three to four compared to the equivalent statistic Jost's D-est (Jost 2008). These statistics also showed a near-perfect correlation. Despite ongoing discussions regarding the usefulness of "adjusted" F-ST statistics, we argue that these could be useful to identify and quantify qualitative differences between populations, which are important from management and conservation perspectives as an indicator of existence of biologically significant variation among tributary populations or a warning of critical environmental damage.
Resumo:
Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes.
Resumo:
Mycobacterium bovis is the causal agent of bovine tuberculosis, one of the most important diseases currently facing the UK cattle industry. Here, we use high-density whole genome sequencing (WGS) in a defined sub-population of M. bovis in 145 cattle across 66 herd breakdowns to gain insights into local spread and persistence. We show that despite low divergence among isolates, WGS can in principle expose contributions of under-sampled host populations to M. bovis transmission. However, we demonstrate that in our data such a signal is due to molecular type switching, which had been previously undocumented for M. bovis. Isolates from farms with a known history of direct cattle movement between them did not show a statistical signal of higher genetic similarity. Despite an overall signal of genetic isolation by distance, genetic distances also showed no apparent relationship with spatial distance among affected farms over distances <5 km. Using simulations, we find that even over the brief evolutionary timescale covered by our data, Bayesian phylogeographic approaches are feasible. Applying such approaches showed that M. bovis dispersal in this system is heterogeneous but slow overall, averaging 2 km/year. These results confirm that widespread application of WGS to M. bovis will bring novel and important insights into the dynamics of M. bovis spread and persistence, but that the current questions most pertinent to control will be best addressed using approaches that more directly integrate WGS with additional epidemiological data.
Resumo:
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic ( 30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals (n=415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus, it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.
Resumo:
Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.
Operationally invariant measure of the distance between quantum states by complementary measruements