10 resultados para international election observation
Resumo:
R-matrix calculations of electron impact excitation rates among the 2s(2)2p(2) P-3, D-1, S-1, and 2s2p(3) S-5 levels of N II are presented. These results are used in conjunction with other recent calculations of electron impact excitation rates and Einstein A-coefficients for N II to derive the emission-line ratio: ratio diagrams and where (R-1, R-2) (R-1, R-3), where R-1 = I(5756.2 Angstrom)/I(6549.9 + 6585.2 Angstrom), R-2 = I(2143.5 Angstrom)/I(6549.9 + 6585.2 Angstrom), and R-3 = I(2139.7 Angstrom)/I(6549.9 + 658.2 Angstrom), for a range of electron temperatures (T-e = 5000-20,000 K) and electron densities (N-e = 10(2)-10(7) cm(-3)) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of T-e and N-e from measurements of the [N II] lines in a spectrum. Plasma parameters deduced for a sample of gaseous nebulae, using observational data obtained from ground-based telescopes plus the International Ultraviolet Explorer and Hubble Space Telescope satellites, are found to show generally excellent internal consistency and to be in good agreement with the values of T-e and N-e estimated from other line ratios. These results provide observational support for the accuracy of the theoretical ratios and hence the atomic data adopted in their derivation. Theoretical ratios are also presented for the infrared line pair R-4 = I(122 mum)/I(205 mum), and the usefulness of R-4 as an electron density diagnostic is briefly discussed.
Resumo:
This article investigates the link between regionalization of the structure of government, regional elections and regionalism on the one hand, and the organization of state-wide political parties in Spain and the UK on the other. It particularly looks at two aspects of the relations between the central and regional levels of party organization: integration of the regional branches in central decision making and autonomy of the regional branches. It argues that the party factors are the most crucial elements explaining party change and that party leaders mediate between environmental changes and party organization. The parties' history and beliefs and the strength of the central leadership condition their ability or willingness to facilitate the emergence of meso-level elites. The institutional and electoral factors are facilitating factors that constitute additional motives for or against internal party decentralization.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) takes only O(n-vlog3/2n) messages to elect a unique leader (with high probability). This algorithm is then extended to solve leader election on any connected non-bipartiten-node graph G in O(t(G)) time and O(t(G)n-vlog3/2n) messages, where t(G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficientdeterministic leader election algorithms. Finally, an almost-tight lower bound is presented for randomized leader election, showing that O(n-v) messages are needed for any O(1) time leader election algorithm which succeeds with high probability. It is also shown that O(n 1/3) messages are needed by any leader election algorithm that succeeds with high probability, regardless of the number of the rounds. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
This paper highlights the crucial role played by party-specific responsibility attributions in performance-based voting. Three models of electoral accountability, which make distinct assumptions regarding citizens' ability to attribute responsibility to distinct governing parties, are tested in the challenging Northern Ireland context - an exemplar case of multi-level multi-party government in which expectations of performance based voting are low. The paper demonstrates the operation of party-attribution based electoral accountability, using data from the 2011 Northern Ireland Assembly Election Study. However, the findings are asymmetric: accountability operates in the Protestant/unionist bloc but not in the Catholic/nationalist bloc. This asymmetry may be explained by the absence of clear ethno-national ideological distinctions between the unionist parties (hence providing political space for performance based accountability to operate) but the continued relevance in the nationalist bloc of ethno-national difference (which limits the scope for performance politics). The implications of the findings for our understanding of the role of party-specific responsibility attribution in performance based models of voting, and for our evaluation of the quality of democracy in post-conflict consociational polities, are discussed.
Resumo:
We study the fundamental Byzantine leader election problem in dynamic networks where the topology can change from round to round and nodes can also experience heavy {\em churn} (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of the network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control over which nodes join and leave and at what times and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is an $O(\log^3 n)$ round algorithm that achieves Byzantine leader election under the presence of up to $O({n}^{1/2 - \epsilon})$ Byzantine nodes (for a small constant $\epsilon > 0$) and a churn of up to \\$O(\sqrt{n}/\poly\log(n))$ nodes per round (where $n$ is the stable network size).The algorithm elects a leader with probability at least $1-n^{-\Omega(1)}$ and guarantees that it is an honest node with probability at least $1-n^{-\Omega(1)}$; assuming the algorithm succeeds, the leader's identity will be known to a $1-o(1)$ fraction of the honest nodes. Our algorithm is fully-distributed, lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic (in $n$) time and requires nodes to send and receive messages of only polylogarithmic size per round.To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way.We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest.