7 resultados para intermediate-temperature buffer layer (ITBF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-free composite cathodes consisting of Pr0.6Sr0.4FeO 3-δ -xCe0.9Pr0.1O 2-δ (PSFO-xCPO, x = 0-50 wt%) have been synthesized using a one-pot method. X-ray diffraction, scanning electron microscopy, thermal expansion coefficient, conductivity, and polarization resistance (R P ) have been used to characterize the PSFO-xCPO cathodes. Furthermore the discharge performance of the Ni-SSZ/SSZ/GDC/PSFO-xCPO cells has been measured. The experimental results indicate that the PSFO-xCPO composite materials fully consist of PSFO and CPO phases and posses a porous microstructure. The conductivity of PSFO-xCPO decreases with the increase of CPO content, but R P of PSFO-40CPO shows the smallest value amongst all the samples. The power density of single cells with a PSFO-40CPO composite cathode is significantly improved compared with that of the PSFO cathode, exhibiting 0.43, 0.75, 1.08 and 1.30 W cm-2 at 650, 700, 750 and 800 °C, respectively. In addition, single cells with the PSFO-40CPO composite cathode show a stable performance with no obvious degradation over 100 h when operating at 750 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material with potential to replace lead zirconate titanate (PZT),1 however high leakage conductivity for the material has been widely reported.2 Through a combination of Impedance Spectroscopy (IS), O2- ion transference (EMF) number experiments and O18 tracer diffusion measurements, combined with Time-of-flight Secondary Ion Mass Spectrometry (TOFSIMS), it was identified that this leakage conductivity was due to oxygen ion conductivity. The volatilization of bismuth during synthesis, causing oxygen vacancies, is believed to be responsible for the leakage conductivity.3 The oxide-ion conductivity, when doped with magnesium, exceeds that of yttria-stabilized zirconia (YSZ) at ~500 °C,3 making it a potential electrolyte material for Intermediate Temperature Solid Oxide Cells (ITSOCs). Figure 1 shows the comparison of bulk oxide ion conductivity between 2 at.% Mg-doped NBT and other known oxide ion conductors.

As part of the UK wide £5.7m 4CU project, research has concentrated on trying to develop NBT for use in Intermediate Temperature Solid Oxide Cells (ITSOCS). With the aim of achieving mixed ionic and electronic conduction, transition metals were chemically doped on to the Ti-site. A range of experimental techniques was used to characterize the materials aimed at investigating both conductivity and material structure (Scanning Electron Microscopy (SEM), IS, X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)). The potential for NBT as an ITSOC material, as well as the challenges of developing the material, will be discussed.

(1) Takenaka T. et al. Jpn. J. Appl. Phys 1999, 30, 2236.

(2) Hiruma Y. et al. J. Appl. Phys 2009, 105, 084112.

(3) Li. M. et al. Nature Materials 2013, 13, 31.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.