5 resultados para indian ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated groundwater salinity as a key element in both the short and long-term evolution of the island of Grande Glorieuse. Firstly, we demonstrated that its evolution involved the integration of the whole range of variables forcing climate change. Piezometric surveys designed to sample the salinity of the subsoil waters of Grande Glorieuse could therefore provide an objective indicator of the environment’s evolution. Then, based on information from geoelectrical investigations, we proved that the spatial distribution of salinity is strongly dependent on the geological structure of the island. Structural heterogeneities can influence vulnerability of the island environment to salinization of the freshwater lens. Thus, characterization and monitoring of the freshwater lens will provide a reliable means of observing and managing anticipated climate changes on small islands. [Join J.-L., Banton O., Comte J.-C., Leze J., Massin F., Nicolini E. (2011), Assessing spatio-temporal patterns of groundwater salinity in small coral islands in the Western Indian Ocean, Western Indian Ocean Journal of Marine Science, 10(1), 1-12]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uppermost 500cm sedimentary core from ODP site located at the Eastern flank of Najareth bank in the Northern Indian Ocean has yielded altogether twenty four species of planktonic foraminifera. Among all these species, Globorotalia menardii has been found to be consistently dominant in the faunal assemblages from most of the samples. The 18O measured on the tests of Globorotalia menardii from all levels help in precisely working out the sediment accumulation rates at different isotopic stages, and deciphering the change in climate in the Late Quaternary as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The island of Mauritius offers the opportunity to study the poorly understood vegetation response to climate change on a small tropical oceanic island. A high-resolution pollen record from a 10 m long peat core from Kanaka Crater (560 m elevation, Mauritius, Indian Ocean) shows that vegetation shifted from a stable open wet forest Last Glacial state to a stable closed-stratified-tall-forest Holocene state. An ecological threshold was crossed at ∼11.5 cal ka BP, propelling the forest ecosystem into an unstable period lasting ∼4000 years. The shift between the two steady states involves a cascade of four abrupt (<150 years) forest transitions in which different tree species dominated the vegetation for a quasi-stable period of respectively ∼1900, ∼1100 and ∼900 years. We interpret the first forest transition as climate-driven, reflecting the response of a small low topography oceanic island where significant spatial biome migration is impossible. The three subsequent forest transitions are not evidently linked to climate events, and are suggested to be driven by internal forest dynamics. The cascade of four consecutive events of species turnover occurred at a remarkably fast rate compared to changes during the preceding and following periods, and might therefore be considered as a composite tipping point in the ecosystem. We hypothesize that wet gallery forest, spatially and temporally stabilized by the drainage system, served as a long lasting reservoir of biodiversity and facilitated a rapid exchange of species with the montane forests to allow for a rapid cascade of plant associations.