199 resultados para image watermarking
Resumo:
This paper presents a new perceptual watermarking model for Discrete Shearlet transform (DST). DST provides the optimal representation [10] of the image features based on multi-resolution and multi-directional analysis. This property can be exploited on for watermark embedding to achieve the watermarking imperceptibility by introducing the human visual system using Chou’s model. In this model, a spatial JND profile is adapted to fit the sub-band structure. The combination of DST and the Just-Noticeable Distortion (JND) profile improves the levels of robustness against certain attacks while minimizing the distortion; by assigning a visibility threshold of distortion to each DST sub-band coefficient in the case of grey scale image watermarking.
Resumo:
Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.