28 resultados para hyperpolarisierte Gase, He-3, MRT, Lunge, Applikator
Resumo:
Previous work by ourselves and by others has demonstrated that protons with a linear energy transfer (LET) about 30 V mu m(-1) are more effective at killing cells than doubly charged particles of the same LET. In this work we show that by using deuterons, which have about twice the range of protons with the same LET, it is possible to extend measurements of the RBE of singly charged particles to higher LET (up to 50 keV mu m(-1)). We report the design and use of a new arrangement for irradiating V79 mammalian cells. Cell survival. measurements have been made using protons in the energy range 1.0-3.7 MeV, deuterons in the energy range 0.9-3.4 MeV and He-3(2+) ions in the energy range 3.4-6.9 MeV;. This corresponds to volume-averaged LET (within the cell nucleus) between 10 and 28 keV mu m(-1) for protons, 18-50 keV mu m(-1) for deuterons, and 59-106 keV mu m(-1) for helium ions. Our results show no difference in the effectiveness of protons and deuterons matched for LET. However, for LET above about 30 keV mu m(-1) singly charged particles are more effective at inactivating cells than doubly-charged particles of the same LET and that this difference can be understood in terms of the radial dose distribution around the primary ion track.
Resumo:
Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.
Resumo:
Recent experimental data for fully differential cross sections have been compared to various continuum-distorted-wave eikonal-initial-state models without much success, despite good agreement with double-differential cross sections. A four-body model is formulated here and results are presented both when the internuclear potential is omitted and when it is included. They are compared with recent experimental data for fully differential cross sections for 3.6 MeV/u Au-P(Z)++He collisions, Z(P)=24,53.
Resumo:
Absolute doubly differential cross sections have been measured as a function of electron energy and angle of observation for electron emission in collisions of 3.5-MeV/u Fe17+ and Fe22+ ions with He and Ar gas targets under single-collision conditions. The measured electron emission cross sections are compared to theoretical and scaled cross sections based on the Born approximation. The results using intermediate-mass ions are discussed with reference to previously reported cross sections from collisions with highly charged lighter- and heavier-ion species at MeV/u projectile energies. The continuum-distorted-wave-eikonal-initial-state approximation shows good agreement with experiments except in the
Resumo:
We have studied the dielectronic recombination process in He-like Fe ions and have obtained the resonant strengths of the KLn (3 less than or equal to, n less than or equal to, 5) resonances. This measurement was performed with the use of an electron beam ion trap by measuring the x-ray energy emitted from highly charged ions simultaneously with the electron beam energy scanned during the measurement. The total resonant strengths obtained are 5.0 x 10(-19), 2.1 x 10(-19) and 1.1 X 10(-19) cm(2) eV, for KLM, KLN and KLO, respectively.
Resumo:
We have determined resonant strengths of the KLn (2 less than or equal to n less than or equal to 5) resonances for helium-like Ti ions and (3 less than or equal to n less than or equal to 5) resonances for helium-like Fe ions. The results were obtained using the Tokyo electron beam ion trap. Characteristic X-rays from both dielectronic recombination and radiative recombination were detected as the electron beam energy was scanned through the resonances. (C) 2003 Elsevier Science B.V. All rights reserved.
Measurements of absolute, single charge-exchange cross sections of H+, He+ and He2+ with H2O and CO2
Resumo:
Absolute measurements have been made of single-electron charge-exchange cross sections of H+, He+, and He2+ in H2O and CO2 in the energy range 0.3-7.5 keV amu(-1). Collisions of this type occur in the interaction of solar wind ions with cometary gases and have been observed by the Giotto spacecraft using the Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during a close encounter with comet Halley in 1986. Increases in the He+ ion density, and in the He2+ to H+ density ratio were reported by Shelley et al, and Fuselier et al. and were explained by charge exchange. However, the lack of reliable cross sections for this process made interpretation of the data difficult. New cross sections are presented and discussed in relation to the Giotto observations.
Resumo:
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDs) produced by the interaction of the ejecta Outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDs dust mass reaches a modest 3.0 x 10(-4) M-circle dot by day 230. While dust condensation within a CDs formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDs formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least similar to 8 x 10(-3) M-circle dot. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.