51 resultados para hybrid natural gas and electricity system (HGES)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the residential demand for electricity and gas, working with nationwide household-level data that cover recent years, namely 1997-2007. Our dataset is a mixed panel/multi-year cross-sections of dwellings/households in the 50 largest metropolitan areas in the United States as of 2008. We estimate static and dynamic models of electricity and gas demand. We find strong household response to energy prices, both in the short and long term. From the static models, we get estimates of the own price elasticity of electricity demand in the -0.860 to -0.667 range, while the own price elasticity of gas demand is -0.693 to -0.566. These results are robust to a variety of checks. Contrary to earlier literature (Metcalf and Hassett, 1999; Reiss and White, 2005), we find no evidence of significantly different elasticities across households with electric and gas heat. The price elasticity of electricity demand declines with income, but the magnitude of this effect is small. These results are in sharp contrast to much of the literature on residential energy consumption in the United States, and with the figures used in current government agency practice. Our results suggest that there might be greater potential for policies which affect energy price than may have been previously appreciated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the integration of combined heat and power (CHP) units, air-conditioners and gas boilers, power, gas, and heat systems are becoming tightly linked to each other in the integrated community energy system (ICES). Interactions among the three systems are not well captured by traditional methods. To address this issue, a hybrid power-gas-heat flow calculation method was developed in this paper. In the proposed method, an energy hub model was presented to describe interactions among the three systems incorporating various CHP operating modes. In addition, three operating modes were proposed for the ICES including fully decoupled, partially coupled, and fully coupled. Numerical results indicated that the proposed algorithm can be used in the steady-state analysis of the ICES and reflect interactions among various energy systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Displacement of fossil fuel-based power through biomass co-firing could reduce the greenhouse gas (GHG) emissions from fossil fuels. In this study, data-intensive techno-economic models were developed to evaluate different co-firing technologies as well as the configurations of these technologies. The models were developed to study 60 different scenarios involving various biomass feedstocks (wood chips, wheat straw, and forest residues) co-fired either with coal in a 500 MW subcritical pulverized coal (PC) plant or with natural gas in a 500 MW natural gas combined cycle (NGCC) plant to determine their technical potential and costs, as well as to determine environmental benefits. The results obtained reveal that the fully paid-off coal-fired power plant co-fired with forest residues is the most attractive option, having levelized costs of electricity (LCOE) of $53.12–$54.50/MW h and CO2 abatement costs of $27.41–$31.15/tCO2. When whole forest chips are co-fired with coal in a fully paid-off plant, the LCOE and CO2 abatement costs range from $54.68 to $56.41/MW h and $35.60 to $41.78/tCO2, respectively. The LCOE and CO2 abatement costs for straw range from $54.62 to $57.35/MW h and $35.07 to $38.48/tCO2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Farm incomes in Ireland are in decline and many farmers would operate at a loss in the absence of subsidies. Agriculture is responsible for 27% of Ireland's greenhouse gas emissions and is the largest contributing sector. Penetration of renewable energy in the heat and transport sectors is falling short of targets, and there is no clear plan for achieving them. The anaerobic digestion of grass to produce biogas or biomethane is put forward as a multifaceted solution, which could help meet energy and emissions targets, reduce dependence on imported energy, and provide additional farm income. This paper addresses the economic viability of such a system. Grass biogas/biomethane fares poorly under the current combined heat and power tariff structure, which is geared toward feedstock that attracts a gate fee. Tariff structures similar to those used in other countries are necessary for the industry to develop. Equally, regulation should be implemented to allow injection of biomethane into the gas grid in Ireland. Blends of natural gas and biomethane can be sold, offering a cost-competitive green fuel. Sale as a renewable transport fuel could allow profitability for the farmer and savings for the consumer, but suffers due to the lack of a market. Under current conditions, the most economically viable outlet for grass biomethane is sale as a renewable heating fuel. The key to competitiveness is the existing natural gas infrastructure that enables distribution of grass biomethane, and the renewable energy targets that allow renewable fuels to compete against each other. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An environment friendly arsenic removal technique from contaminated soil with high iron content has been studied. A natural surfactant extracted from soapnut fruit, phosphate solution and their mixture was used separately as extractants. The mixture was most effective in desorbing arsenic, attaining above 70 % efficiency in the pH range of 4–5. Desorption kinetics followed Elovich model. Micellar solubilization by soapnut and arsenic exchange mechanism by phosphate are the probable mechanisms behind arsenic desorption. Sequential extraction reveals that the mixed soapnut–phosphate system is effective in desorbing arsenic associated with amphoteric–Fe-oxide forms. No chemical change to the wash solutions was observed by Fourier transform-infrared spectra. Soil:solution ratio, surfactant and phosphate concentrations were found to affect the arsenic desorption process. Addition of phosphate boosted the performance of soapnut solution considerably. Response surface methodology approach predicted up to 80 % desorption of arsenic from soil when treated with a mixture of ≈1.5 % soapnut, ≈100 mM phosphate at a soil:solution ratio of 1:30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(ii) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide solubility in a set of carboxylate ionic liquids formulated with stoicheiometric amounts of water is found to be significantly higher than for other ionic liquids previously reported. This is due to synergistic chemical and physical absorption. The formulated ionic liquid/water mixtures show greatly enhanced carbon dioxide solubility relative to both anhydrous ionic liquids and aqueous ionic liquid solutions, and are competitive with commercial chemical absorbers, such as activated N-methyldiethanolamine or monoethanolamine.