109 resultados para human factor
Resumo:
Context Medical students can have difficulty in distinguishing left from right. Many infamous medical errors have occurred when a procedure has been performed on the wrong side, such as in the removal of the wrong kidney. Clinicians encounter many distractions during their work. There is limited information on how these affect performance.
Objectives Using a neuropsychological paradigm, we aim to elucidate the impacts of different types of distraction on left–right (LR) discrimination ability.
Methods Medical students were recruited to a study with four arms: (i) control arm (no distraction); (ii) auditory distraction arm (continuous ambient ward noise); (iii) cognitive distraction arm (interruptions with clinical cognitive tasks), and (iv) auditory and cognitive distraction arm. Participants’ LR discrimination ability was measured using the validated Bergen Left–Right Discrimination Test (BLRDT). Multivariate analysis of variance was used to analyse the impacts of the different forms of distraction on participants’ performance on the BLRDT. Additional analyses looked at effects of demographics on performance and correlated participants’ self-perceived LR discrimination ability and their actual performance.
Results A total of 234 students were recruited. Cognitive distraction had a greater negative impact on BLRDT performance than auditory distraction. Combined auditory and cognitive distraction had a negative impact on performance, but only in the most difficult LR task was this negative impact found to be significantly greater than that of cognitive distraction alone. There was a significant medium-sized correlation between perceived LR discrimination ability and actual overall BLRDT performance.
Conclusions
Distraction has a significant impact on performance and multifaceted approaches are required to reduce LR errors. Educationally, greater emphasis on the linking of theory and clinical application is required to support patient safety and human factor training in medical school curricula. Distraction has the potential to impair an individual's ability to make accurate LR decisions and students should be trained from undergraduate level to be mindful of this.
Resumo:
Situation Background Assessment and Recommendation (SBAR): Undergraduate Perspectives C Morgan, L Adams, J Murray, R Dunlop, IK Walsh. Ian K Walsh, Centre for Medical Education, Queen’s University Belfast, Mulhouse Building, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6DP Background and Purpose: Structured communication tools are used to improve team communication quality.1,2 The Situation Background Assessment and Recommendation (SBAR) tool is widely adopted within patient safety.3 SBAR effectiveness is reportedly equivocal, suggesting use is not sustained beyond initial training.4-6 Understanding perspectives of those using SBAR may further improve clinical communication. We investigated senior medical undergraduate perspectives on SBAR, particularly when communicating with senior colleagues. Methodology: Mixed methods data collection was used. A previously piloted questionnaire with 12 five point Lickert scale questions and 3 open questions was given to all final year medical students. A subgroup also participated in 10 focus groups, deploying strictly structured audio-recorded questions. Selection was by convenience sampling, data gathered by open text questions and comments transcribed verbatim. In-vivo coding (iterative, towards data saturation) preceded thematic analysis. Results: 233 of 255 students (91%) completed the survey. 1. There were clearly contradictory viewpoints on SBAR usage. A recurrent theme was a desire for formal feedback and a relative lack of practice/experience with SBAR. 2. Students reported SBAR as having variable interpretation between individuals; limiting use as a shared mental model. 3. Brief training sessions are insufficient to embed the tool. 4. Most students reported SBAR helping effective communication, especially by providing structure in stressful situations. 5. Only 18.5% of students felt an alternative resource might be needed. Sub analysis of the themes highlighted: A. Lack of clarity regarding what information to include and information placement within the acronym, B. Senior colleague negative response to SBAR C. Lack of conciseness with the tool. Discussion and Conclusions: Despite a wide range of contradictory interpretation of SBAR utility, most students wish to retain the resource. More practice opportunities/feedback may enhance user confidence and understanding. References: (1) Leonard M, Graham S, Bonacum D. The human factor: the critical importance of effective teamwork and communication in providing safe care. Quality & Safety in Health Care 2004 Oct;13(Suppl 1):85-90. (2) d'Agincourt-Canning LG, Kissoon N, Singal M, Pitfield AF. Culture, communication and safety: lessons from the airline industry. Indian J Pediatr 2011 Jun;78(6):703-708. (3) Dunsford J. Structured communication: improving patient safety with SBAR. Nurs Womens Health 2009 Oct;13(5):384-390. (4) Compton J, Copeland K, Flanders S, Cassity C, Spetman M, Xiao Y, et al. Implementing SBAR across a large multihospital health system. Jt Comm J Qual Patient Saf 2012 Jun;38(6):261-268. (5) Ludikhuize J, de Jonge E, Goossens A. Measuring adherence among nurses one year after training in applying the Modified Early Warning Score and Situation-Background-Assessment-Recommendation instruments. Resuscitation 2011 Nov;82(11):1428-1433. (6) Cunningham NJ, Weiland TJ, van Dijk J, Paddle P, Shilkofski N, Cunningham NY. Telephone referrals by junior doctors: a randomised controlled trial assessing the impact of SBAR in a simulated setting. Postgrad Med J 2012 Nov;88(1045):619-626.
Resumo:
This review aims to summarise our knowledge to date on the protein complement of the synovial fluid (S F). The tissues, structure and pathophysiology of the synovial joint are briefly described. The salient features of the S F proteome, how it is composed and the influence of arthritic disease are highlighted and discussed. The concentrations of proteins that have been detected and quantified in SF are drawn together from the literature on osteoarthritis, rheumatoid arthritis and juvenile idiopathic arthritis. The measurements are plotted to give a perspective on the dynamic range of protein levels within the SF. Approaches to proteomic analysis of SF to date are discussed along with their findings. From the recent literature reviewed within, it is becoming increasingly clear that analysis of the SF proteome as a whole, could deliver the most valuable differential diagnostic fingerprints of a number of arthritic disorders. Further development of proteomic platforms could characterise prognostic profiles to improve the cliniciads ability to resolve unremitting disease by existing and novel therapeutics.