94 resultados para high-protein plants
Resumo:
The spray-congealing technique, a solvent-free drug encapsulation process, was successfully employed to obtain lipid-based particulate systems with high (10–20% w/w) protein loading. Bovine serum albumin (BSA) was utilised as model protein and three low melting lipids (glyceryl palmitostearate, trimirystin and tristearin) were employed as carriers. BSA-loaded lipid microparticles were characterised in terms of particle size, morphology and drug loading. The results showed that the microparticles exhibited a spherical shape, mean diameter in the range 150–300 µm and an encapsulation efficiency higher than 90%. Possible changes in the protein structure as a result of the manufacturing process was then investigated for the first time using UV spectrophotometry in fourth derivative mode and FT-Raman spectroscopy. The results suggested that the structural integrity of the protein was maintained within the particles. Thermal analysis indicated that the effect of protein on the thermal properties of the carriers could be detected. Spray-congealing could thus be considered a suitable technique to produce highly BSA-loaded microparticles preserving the structure of the protein.
Resumo:
The osmoregulatory function of common spiny mice Acomys cahirinus living on opposite slopes of the lower Nahal Oren ('Evolution Canyon') on mount Carmel, Israel, was investigated by increasing the salinity of the water source whilst maintaining a high-protein diet. The southern-facing slope (SFS) of this canyon differs from the northern-facing slope (NFS) as it receives considerably more solar radiation and consequently forms a more xeric, sparsely vegetated habitat. During the summer, mice living on the two opposite slopes significantly differed in their urine osmolality, which also increased significantly as dietary salinity increased. Offspring of wild-captured mice, born in captivity, and examined during the winter, continued to show a difference in osmoregulatory function depending on the slope of origin. However, they differed from wild-captured mice, as they did not respond to the increase in dietary salinity by increasing the concentration of their urine, but rather by increasing the volume of urine produced. This study shows that A. cahirinus occupying different microhabitats may exhibit differences in their ability to concentrate urine and thus in their ability to withstand xeric conditions. We suggest that they may also differ genetically, as offspring from the NFS and SFS retain physiological differences, but further studies will be needed to confirm this hypothesis.
Resumo:
Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.
Resumo:
A huge variety of proteins are able to form fibrillar structures(1), especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand(2,3). Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal(4,5) and carboxy-terminal(6) domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation(7) initiated by changes in ionic composition(8,9) and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation(10-14). However, despite recent structural data(15), little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.
Resumo:
Prominent theories of plant defence have predicted that plants growing on nutrient-poor soils produce more phenolic defence compounds than those on richer soils. Only recently has the Protein Competition Model (PCM) of phenolic allocation suggested that N and P limitation could have different effects because the nutrients are involved in different cellular metabolic processes. 2. We extend the prediction of the PCM and hypothesize that N will have a greater influence on the production of phenolic defensive compounds than P availability, because N limitation reduces protein production and thus competition for phenylalanine, a precursor of many phenolic compounds. In contrast, P acts as a recyclable cofactor in these reactions, allowing protein and hence phenolic production to continue under low P conditions. 3. We test this hypothesis by comparing the foliar concentrations of phenolic compounds in (i) phenotypes of 21 species growing on P-rich alluvial terraces and P-depleted marine terraces in southern New Zealand, and (ii) 87 species growing under similar climates on comparatively P-rich soils in New Zealand vs. P-depleted soils in Tasmania. 4. Foliar P concentrations of plants from the marine terraces were about half those of plants from alluvial soils, and much lower in Tasmania than in New Zealand. However, foliar concentrations of N and phenolic compounds were similar across sites in both comparisons, supporting the hypothesis that N availability is a more important determinant of plant investment in phenolic defensive compounds than P availability. We found no indication that reduced soil P levels influenced plant concentrations of phenolic compounds. There was wide variation in the foliar N and P concentrations among species, and those with low foliar nutrient concentrations produced more phenolics (including condensed tannins). 5. Our study is the first trait comparison extending beyond standard leaf economics to include secondary metabolites related to defence in forest plants, and emphasizes that N and P have different influences on the production of phenolic defence compounds. © 2009 British Ecological Society.
Resumo:
A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.
Resumo:
The regulator of the G-protein signaling 4 (RGS4) gene was shown to have a different expression pattern in schizophrenia patients in a microarray study. A family-based study subsequently implicated the association of this gene with schizophrenia. We replicated the study with our sample from the Irish Study of High Density Schizophrenia Families (ISHDSF). Single marker transmission disequilibrium tests (TDT) for the four core SNPs showed modest association for SNP 18 (using a narrow diagnostic approach with FBAT P = 0.044; with PDT P = 0.0073) and a trend for SNP 4 (with FBAT P = 0.1098; with PDT P = 0.0249). For SNP 1 and 7, alleles overtransmitted to affected subjects were the same as previously reported. Haplotype analyses suggested that haplotype G-G-G for SNP1-4-18, which is the most abundant haplotype (42.3%) in the Irish families, was associated with the disease (narrow diagnosis, FBAT P = 0.0061, PDT P = 0.0498). This was the same haplotype implicated in the original study. While P values were not corrected for multiple testing because of the clear prior hypothesis, these results could be interpreted as supporting evidence for the association between RGS4 and schizophrenia.
Resumo:
The present study assessed whether increased fruit and vegetable (F&V) intake reduced the concentrations of the inflammatory marker serum amyloid A (SAA) in serum, HDL2 and HDL3 and whether the latter reduction influenced any of the functional properties of these HDL subfractions. The present study utilised samples from two previous studies: (1) the FAVRIT (Fruit and Vegetable Randomised Intervention Trial) study - hypertensive subjects (systolic blood pressure (BP) range 140-190 mmHg; diastolic BP range 90-110 mmHg) were randomised to receive a 1-, 3- or 6-portion F&V/d intervention for 8 weeks, and (2) the ADIT (Ageing and Dietary Intervention Trial) study - older subjects (65-85 years) were randomised to receive a 2- or 5-portion F&V/d intervention for 16 weeks. HDL2 and HDL3 were isolated by rapid ultracentrifugation. Measurements included the following: serum high-sensitive C-reactive protein (hsCRP) by an immunoturbidimetric assay; serum IL-6 and E-selectin and serum-, HDL2- and HDL3-SAA by ELISA procedures; serum-, HDL2- and HDL3-cholesterol ester transfer protein (CETP) activity by a fluorometric assay. Although the concentrations of hsCRP, IL-6 and E-selectin were unaffected by increasing F&V intake in both studies (P>0·05 for all comparisons), those of SAA in HDL3 decreased in the FAVRIT cohort (P= 0·049) and those in HDL2 and HDL3 decreased in the ADIT cohort (P= 0·035 and 0·032), which was accompanied by a decrease in the activity of CETP in HDL3 in the FAVRIT cohort (P= 0·010) and in HDL2 in the ADIT cohort (P= 0·030). These results indicate that SAA responds to increased F&V intake, while other inflammatory markers remain unresponsive, and this leads to changes in HDL2 and HDL3, which may influence their antiatherogenic potential. Overall, the present study provides tangible evidence of the effectiveness of increased F&V intake, which may be of use to health policy makers and the general public.
Resumo:
HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.
Resumo:
A critical role for the conserved -integrin cytoplasmic motif, KVGFFKR, is recognized in the regulation of activation of the platelet integrin IIb3. To understand the molecular mechanisms of this regulation, we sought to determine the nature of the protein interactions with this cytoplasmic motif. We used a tagged synthetic peptide, biotin-KVGFFKR, to probe a high density protein expression array (37,200 recombinant human proteins) for high affinity interactions. A number of potential integrin-binding proteins were identified. One such protein, a chloride channel regulatory protein, ICln, was characterized further because its affinity for the integrin peptide was highest as was its expression in platelets. We verified the presence of ICln in human platelets by PCR, Western blots, immunohistochemistry, and its co-association with IIb3 by surface plasmon resonance. The affinity of this interaction was 82.2 ± 24.4 nM in a cell free assay. ICln co-immunoprecipitates with IIb3 in platelet lysates demonstrating that this interaction is physiologically relevant. Furthermore, immobilized KVGFFKR peptides, but not control KAAAAAR peptides, specifically extract ICln from platelet lysates. Acyclovir (100 µM to 5 mM), a pharmacological inhibitor of the ICln chloride channel, specifically inhibits integrin activation (PAC-1 expression) and platelet aggregation without affecting CD62 P expression confirming a specific role for ICln in integrin activation. In parallel, a cell-permeable peptide corresponding to the potential integrin-recognition domain on ICln (AKFEEE, 10–100 µM) also inhibits platelet function. Thus, we have identified, verified, and characterized a novel functional interaction between the platelet integrin and ICln, in the platelet membrane.
Resumo:
Objective. The use of glucocorticoids (GCs) in the treatment of RA is a frequent cause of bone loss. In vitro, however, this same class of steroids has been shown to promote the recruitment and/or maturation of primitive osteogenic precursors present in the colony forming unit-fibroblastic (CFU-F) fraction of human bone and marrow. In an effort to reconcile these conflicting observations, we investigated the effects of the synthetic GC dexamethasone (Dx) on parameters of growth and osteogenic differentiation in cultures of bone marrow stromal cells derived from a large cohort of adult human donors (n=30). Methods. Marrow suspensions were cultured in the absence and presence of Dx at concentrations between 10 pm and 1 µm. After 28 days we determined the number and diameter of colonies formed, the total number of cells, the surface expression of receptors for selected growth factors and extracellular matrix proteins and, based on the expression of the developmental markers alkaline phosphatase (AP) and the antigen recognized by the STRO-1 monoclonal antibody, the proportion of cells undergoing osteogenic differentiation and their extent of maturation. Results. At a physiologically equivalent concentration, Dx had no effect on the adhesion of CFU-F or on their subsequent proliferation, but did promote their osteogenic differentiation and further maturation. These effects were independent of changes in the expression of the receptors for fibroblast growth factors, insulin-like growth factor 1, nerve growth factor, platelet-derived growth factors and parathyroid hormone/parathyroid hormone-related protein, but were associated with changes in the number of cells expressing the 2 and 4, but not ß1, integrin subunits. At supraphysiological concentrations, the effects of Dx on the osteogenic recruitment and maturation of CFU-F and their progeny were maintained but at the expense of a decrease in cell number. Conclusions. A decrease in the proliferation of osteogenic precursors, but not in their differentiation or maturation, is likely to be a key factor in the genesis of GC-induced bone loss.