2 resultados para high salt intake
Resumo:
Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.
We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.
References
[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.
[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.
[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.
Resumo:
BACKGROUND: Despite the known health benefits of fruit and vegetables (FV), population intakes remain low. One potential contributing factor may be a lack of understanding surrounding recommended intakes. The present study aimed to explore the understanding of FV intake guidelines among a sample of low FV consumers.
METHODS: Six semi-structured focus groups were held with low FV consumers (n = 28, age range 19-55 years). Focus groups were recorded digitally, transcribed verbatim and analysed thematically using nvivo (QSR International, Melbourne, Australia) to manage the coded data. Participants also completed a short questionnaire assessing knowledge on FV intake guidelines. Descriptive statistics were used to analyse responses.
RESULTS: The discussions highlighted that, although participants were aware of FV intake guidelines, they lacked clarity with regard to the meaning of the '5-a-day' message, including what foods are included in the guideline, as well as what constitutes a portion of FV. There was also a sense of confusion surrounding the concept of achieving variety with regard to FV intake. The sample highlighted a lack of previous education on FV portion sizes and put forward suggestions for improving knowledge, including increased information on food packaging and through health campaigns. Questionnaire findings were generally congruent with the qualitative findings, showing high awareness of the '5-a-day' message but a lack of knowledge surrounding FV portion sizes.
CONCLUSIONS: Future public health campaigns should consider how best to address the gaps in knowledge identified in the present study, and incorporate evaluations that will allow the impact of future initiatives on knowledge, and ultimately behaviour, to be investigated.