29 resultados para hierarchical generalized linear model
Resumo:
One of the first attempts to develop a formal model of depth cue integration is to be found in Maloney and Landy's (1989) "human depth combination rule". They advocate that the combination of depth cues by the visual sysetem is best described by a weighted linear model. The present experiments tested whether the linear combination rule applies to the integration of texture and shading. As would be predicted by a linear combination rule, the weight assigned to the shading cue did vary as a function of its curvature value. However, the weight assigned to the texture cue varied systematically as a function of the curvature value of both cues. Here we descrive a non-linear model which provides a better fit to the data. Redescribing the stimuli in terms of depth rather than curvature reduced the goodness of fit for all models tested. These results support the hypothesis that the locus of cue integration is a curvature map, rather than a depth map. We conclude that the linear comination rule does not generalize to the integration of shading and texture, and that for these cues it is likely that integration occurs after the recovery of surface curvature.
Resumo:
PURPOSE: To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes. DESIGN: Sibling correlation study and genome-wide association study (GWAS). PARTICIPANTS: For the sibling correlation study, 209 sibling pairs with advanced AMD were included. For the GWAS, 2594 participants with advanced AMD subtypes and 4134 controls were included. Replication cohorts included 5383 advanced AMD participants and 15 240 controls. METHODS: Participants had the AMD grade assigned based on fundus photography, examination, or both. To determine heritability of advanced AMD subtypes, a sibling correlation study was performed. For the GWAS, genome-wide genotyping was conducted and 6 036 699 single nucleotide polymorphisms (SNPs) were imputed. Then, the SNPs were analyzed with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES: Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS: The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P = 4.2×10(-5)), meaning that in siblings of probands with CNV or GA, the same advanced subtype is more likely to develop. In the analysis comparing participants with CNV to those with GA, a statistically significant association was observed at the ARMS2/HTRA1 locus (rs10490924; odds ratio [OR], 1.47; P = 4.3×10(-9)), which was confirmed in the replication samples (OR, 1.38; P = 7.4×10(-14) for combined discovery and replication analysis). CONCLUSIONS: Whether CNV versus GA develops in a patient with AMD is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes, but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations that differ for advanced AMD subtypes and deserve follow-up in additional studies. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.
Resumo:
BACKGROUND: Offspring of women with diabetes mellitus (DM) during pregnancy have a risk of developing metabolic disease in adulthood greater than that conferred by genetics alone. The mechanisms responsible are unknown, but likely involve fetal exposure to the in utero milieu, including glucose and circulating adipokines. The purpose of this study was to assess the impact of maternal DM on fetal adipokines and anthropometry in infants of Hispanic and Native American women.
METHODS: We conducted a prospective study of offspring of mothers with normoglycemia (Con-O; n = 79) or type 2 or gestational DM (DM-O; n = 45) pregnancies. Infant anthropometrics were measured at birth and 1-month of age. Cord leptin, high-molecular-weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF) and C-peptide were measured by ELISA. Differences between groups were assessed using the Generalized Linear Model framework. Correlations were calculated as standardized regression coefficients and adjusted for significant covariates.
RESULTS: DM-O were heavier at birth than Con-O (3.7 ± 0.6 vs. 3.4 ± 0.4 kg, p = 0.024), but sum of skinfolds (SSF) were not different. At 1-month, there was no difference in weight, SSF or % body fat or postnatal growth between groups. Leptin was higher in DM-O (20.1 ± 14.9 vs. 9.5 ± 9.9 ng/ml in Con-O, p < 0.0001). Leptin was positively associated with birth weight (p = 0.0007) and SSF (p = 0.002) in Con-O and with maternal hemoglobin A1c in both groups (Con-O, p = 0.023; DM-O, p = 0.006). PEDF was positively associated with birth weight in all infants (p = 0.004). Leptin was positively associated with PEDF in both groups, with a stronger correlation in DM-O (p = 0.009). At 1-month, HMWA was positively associated with body weight (p = 0.004), SSF (p = 0.025) and % body fat (p = 0.004) across the cohort.
CONCLUSIONS: Maternal DM results in fetal hyperleptinemia independent of adiposity. HMWA appears to influence postnatal growth. Thus, in utero exposure to DM imparts hormonal differences on infants even without aberrant growth.
Resumo:
Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.
Resumo:
Objectives: Family caregivers play a vital role in maintaining the lives of individuals with advanced illness living in the community. However, the responsibility of caregiving for an end-of-life family member can have profound consequences on the psychological, physical and financial well-being of the caregiver. While the literature has identified caregiver stress or strain as a complex process with multiple contributing factors, few comprehensive studies exist. This study examined a wide range of theory-driven variables contributing to family caregiver stress. Method: Data variables from interviews with primary family caregivers were mapped onto the factors within the Stress Process Model theoretical framework. A hierarchical multiple linear regression analysis was used to determine the strongest predictors of caregiver strain as measured by a validated composite index, the Caregiver Strain Index. Results: The study included 132 family caregivers across south-central/western Ontario, Canada. About half of these caregivers experienced high strain, the extent of which was predicted by lower perceived program accessibility, lower functional social support, greater weekly amount of time caregivers committed to the care recipient, younger caregiver age and poorer caregiver self-perceived health. Conclusion: This study examined the influence of a multitude of factors in the Stress Process Model on family caregiver strain, finding stress to be a multidimensional construct. Perceived program accessibility was the strongest predictor of caregiver strain, more so than intensity of care, highlighting the importance of the availability of community resources to support the family caregiving role.
Resumo:
A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.
Resumo:
The development and implementation of a population supplementation and restoration plan for any endangered species should involve an understanding of the species’ habitat requirements prior to the release of any captive bred individuals. The freshwater pearl mussel, Margaritifera margaritifera, has undergone dramatic declines over the last century and is now globally endangered. In Northern Ireland, the release of captive bred individuals is being used to support wild populations and repatriate the species in areas where it once existed. We employed a combination of maximum entropy modelling (MAXENT) and Generalized Linear Mixed Models (GLMM) to identify ecological parameters necessary to support wild populations using GIS-based landscape scale and ground-truthed habitat scale environmental parameters. The GIS-based landscape scale model suggested that mussel occurrence was associated with altitude and soil characteristics including the carbon, clay, sand, and silt content. Notably, mussels were associated with a relatively narrow band of variance indicating that M. margaritifera has a highly specific landscape niche. The ground-truthed habitat scale model suggested that mussel occurrence was associated with stable consolidated substrates, the extent of bankside trees, presence of indicative macrophyte species and fast flowing water. We propose a three phase conservation strategy for M. margaritifera identifying suitable areas within rivers that (i) have a high conservation value yet needing habitat restoration at a local level, (ii) sites for population supplementation of existing populations and (iii) sites for species reintroduction to rivers where the mussel historically occurred but is now locally extinct. A combined analytical approach including GIS-based landscape scale and ground-truthed habitat scale models provides a robust method by which suitable release sites can be identified for the population supplementation and restoration of an endangered species. Our results will be highly influential in the future management of M. margaritifera in Northern Ireland.
Resumo:
A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall- magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
Resumo:
We predicted that the probability of egg occurrence of salamander Salamandrina perspicillata depended on stream features and predation by native crayfish Austropotamobius fulcisianus and the introduced trout Salmo trutta. We assessed the presence of S. perspicillata at 54 sites within a natural reserve of southern Tuscany, Italy. Generalized linear models with binomial errors were constructed using egg presence/absence and altitude, stream mean size and slope, electrical conductivity, water pH and temperature, and a predation factor, defined according to the presence/absence of crayfish and trout. Some competing models also included an autocovariate term, which estimated how much the response variable at any one sampling point reflected response values at surrounding points. The resulting models were compared using Akaike's information criterion. Model selection led to a subset of 14 models with Delta AIC(c) <7 (i.e., models ranging from substantial support to considerably less support), and all but one of these included an effect of predation. Models with the autocovariate term had considerably more support than those without the term. According to multimodel inference, the presence of trout and crayfish reduced the probability of egg occurrence from a mean level of 0.90 (SE limits: 0.98-0.55) to 0.12 (SE limits: 0.34-0.04). The presence of crayfish alone had no detectable effects (SE limits: 0.86-0.39). The results suggest that introduced trout have a detrimental effect on the reproductive output of S. perspicillata and confirm the fundamental importance of distinguishing the roles of endogenous and exogenous forces that act on population distribution.