6 resultados para hematopoietic
Resumo:
BACKGROUND: Hematopoietic stem cell renewal and differentiation are regulated through epigenetic processes. The conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) by ten-eleven-translocation enzymes provides new insights into the epigenetic regulation of gene expression during development. Here, we studied the potential gene regulatory role of 5hmC during human hematopoiesis.
RESULTS: We used reduced representation of 5-hydroxymethylcytosine profiling (RRHP) to characterize 5hmC distribution in CD34+ cells, CD4+ T cells, CD19+ B cells, CD14+ monocytes and granulocytes. In all analyzed blood cell types, the presence of 5hmC at gene bodies correlates positively with gene expression, and highest 5hmC levels are found around transcription start sites of highly expressed genes. In CD34+ cells, 5hmC primes for the expression of genes regulating myeloid and lymphoid lineage commitment. Throughout blood cell differentiation, intragenic 5hmC is maintained at genes that are highly expressed and required for acquisition of the mature blood cell phenotype. Moreover, in CD34+ cells, the presence of 5hmC at enhancers associates with increased binding of RUNX1 and FLI1, transcription factors essential for hematopoiesis.
CONCLUSIONS: Our study provides a comprehensive genome-wide overview of 5hmC distribution in human hematopoietic cells and new insights into the epigenetic regulation of gene expression during human hematopoiesis.
Resumo:
The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.Leukemia advance online publication, 17 June 2016; doi:10.1038/leu.2016.149.
Resumo:
Contaminating tumour cells in apheresis products have proved to influence the outcome of patients with multiple myeloma (MM) undergoing autologous stem cell transplantation (APBSCT). The gene scanning of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) is a reproducible and easy to perform technique that can be optimised for clinical laboratories. We used it to analyse the aphereses of 27 MM patients undergoing APBSCT with clonally detectable VDJH segments, and 14 of them yielded monoclonal peaks in at least one apheresis product. The presence of positive results was not related to any pre-transplant characteristics, except the age at diagnosis (lower in patients with negative products, P = 0.04). Moreover, a better pre-transplant response trended to associate with a negative result (P = 0.069). Patients with clonally free products were more likely to obtain a better response to transplant (complete remission, 54% vs 28%; >90% reduction in the M-component, 93% vs 43% P = 0.028). In addition, patients transplanted with polyclonal products had longer progression-free survival, (39 vs 19 months, P = 0.037) and overall survival (81% vs 28% at 5 years, P = 0.045) than those transplanted with monoclonal apheresis. In summary, the gene scanning of apheresis products is a useful and clinically relevant technique in MM transplanted patients.
Resumo:
In the present paper, we report on the use of the heteroduplex PCR technique to detect the presence of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) in the apheresis products of patients with multiple myeloma (MM) undergoing autologous peripheral blood stem cell (APBSC) transplantation. Twenty-three out of 31 MM patients undergoing APBSC transplantation with VDJH segments clonally rearranged detected at diagnosis were included in the study. Samples of the apheresis products were PCR amplified using JH and VH (FRIII and FRII) consensus primers and subsequently analyzed with the heteroduplex technique, and compared with those obtained at diagnosis. 52% of cases yielded positive results (presence of clonally rearranged VDJH segments in at least one apheresis). The presence of positive results in the apheresis products was not related to any pretransplant characteristics with the exception of response status at transplant. Thus, while no one patient with positive apheresis products was in complete remission (CR), negative immunofixation, before the transplant, five cases (46%) with negative apheresis were already in CR at transplant (P = 0.01). The remaining six cases with heteroduplex PCR negative apheresis were in partial remission before transplant. Patients with clonally free products were more likely to obtain CR following transplant (64% vs 17%, P= 0.02) and a longer progression-free survival, (40 months in patients transplanted with polyclonal products vs 20 with monoclonal ones, P = 0.03). These results were consistent when the overall survival was considered, since it was better in those patients with negative apheresis than it was in those with positive (83% vs 36% at 5 years from diagnosis, P= 0.01). These findings indicate that the presence of clonality rearranged VDJH segments is related to the response and outcome in MM transplanted patients.
Resumo:
The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.
Resumo:
Development of anti-cancer drugs towards clinical application is costly and inefficient. Large screens of drugs, efficacious for non-cancer disease, are currently being used to identify candidates for repurposing based on their anti-cancer properties. Here, we show that low-dose salinomycin, a coccidiostat ionophore previously identified in a breast cancer screen, has anti-leukemic efficacy. AML and MLLr cell lines, primary cells and patient samples were sensitive to submicromolar salinomycin. Most strikingly, colony formation of normal hematopoietic cells was unaffected by salinomycin, demonstrating a lack of hemotoxicity at the effective concentrations. Furthermore, salinomycin treatment of primary cells resulted in loss of leukemia repopulation ability following transplantation, as demonstrated by extended recipient survival compared to controls. Bioinformatic analysis of a 17-gene signature identified and validated in primary MLLr cells, uncovered immunomodulatory pathways, hubs and protein interactions as potential transducers of low dose salinomycin treatment. Additionally, increased protein expression of p62/Sqstm1, encoded for by one of the 17 signature genes, demonstrates a role for salinomycin in aggresome/vesicle formation indicative of an autophagic response.
Together, the data support the efficacy of salinomycin as an anti-leukemic at non-hemotoxic concentrations. Further investigation alone or in combination with other therapies is warranted for future clinical trial.