4 resultados para heart right atrium pressure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: A number of studies have demonstrated the presence of a diabetic cardiomyopathy, increasing the risk of heart failure development in this population. Improvements in present-day risk factor control may have modified the risk of diabetes-associated cardiomyopathy.

AIM: We sought to determine the contemporary impact of diabetes mellitus (DM) on the prevalence of cardiomyopathy in at-risk patients with and without adjustment for risk factor control.

DESIGN: A cross-sectional study in a population at risk for heart failure.

METHODS: Those with diabetes were compared to those with other cardiovascular risk factors, unmatched, matched for age and gender and then matched for age, gender, body mass index, systolic blood pressure and low density lipoprotein cholesterol.

RESULTS: In total, 1399 patients enrolled in the St Vincent's Screening to Prevent Heart Failure (STOP-HF) cohort were included. About 543 participants had an established history of DM. In the whole sample, Stage B heart failure (asymptomatic cardiomyopathy) was not found more frequently among the diabetic cohort compared to those without diabetes [113 (20.8%) vs. 154 (18.0%), P = 0.22], even when matched for age and gender. When controlling for these risk factors and risk factor control Stage B was found to be more prevalent in those with diabetes [88 (22.2%)] compared to those without diabetes [65 (16.4%), P = 0.048].

CONCLUSION: In this cohort of patients with established risk factors for Stage B heart failure superior risk factor management among the diabetic population appears to dilute the independent diabetic insult to left ventricular structure and function, underlining the importance and benefit of effective risk factor control in this population on cardiovascular outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the nature and biomechanical properties of collagen fibers within the human myocardium. Targeting cardiac interstitial abnormalities will likely become a major focus of future preventative strategies with regard to the management of cardiac dysfunction. Current knowledge regarding the component structures of myocardial collagen networks is limited, further delineation of which will require application of more innovative technologies. We applied a novel methodology involving combined confocal laser scanning and atomic force microscopy to investigate myocardial collagen within ex-vivo right atrial tissue from 10 patients undergoing elective coronary bypass surgery. Immuno-fluorescent co-staining revealed discrete collagen I and III fibers. During single fiber deformation, overall median values of stiffness recorded in collagen III were 37±16% lower than in collagen I [p<0.001]. On fiber retraction, collagen I exhibited greater degrees of elastic recoil [p<0.001; relative percentage increase in elastic recoil 7±3%] and less energy dissipation than collagen III [p<0.001; relative percentage increase in work recovered 7±2%]. In atrial biopsies taken from patients in permanent atrial fibrillation (n=5) versus sinus rhythm (n=5), stiffness of both collagen fiber subtypes was augmented (p<0.008). Myocardial fibrillar collagen fibers organize in a discrete manner and possess distinct biomechanical differences; specifically, collagen I fibers exhibit relatively higher stiffness, contrasting with higher susceptibility to plastic deformation and less energy efficiency on deformation with collagen III fibers. Augmented stiffness of both collagen fiber subtypes in tissue samples from patients with atrial fibrillation compared to those in sinus rhythm are consistent with recent published findings of increased collagen cross-linking in this setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Hypertension is one of the main drivers of the heart failure (HF) epidemic. The aims of this study were to profile fibro-inflammatory biomarkers across stages of the hypertensive heart disease (HHD) spectrum and to examine whether particular biochemical profiles in asymptomatic patients identify a higher risk of evolution to HF.

METHODS AND RESULTS: This was a cross-sectional observational study involving a population of 275 stable hypertensive patients divided into two different cohorts: Group 1, asymptomatic hypertension (AH) (n= 94); Group 2, HF with preserved ejection fraction (n= 181). Asymptomatic hypertension patients were further subdivided according to left atrial volume index ≥34 mL/m(2) (n= 30) and <34 mL/m(2) (n= 64). Study assays involved inflammatory markers [interleukin 6 (IL6), interleukin 8 (IL8), monocyte chemoattractant protein 1 (MCP1), and tumour necrosis factor α], collagen 1 and 3 metabolic markers [carboxy-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 1, amino-terminal propeptide of collagen 3 (PIIINP), and carboxy-terminal telopeptide of collagen 1 (CITP)], extra-cellular matrix turnover markers [matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1)], and the brain natriuretic peptide. Data were adjusted for age, sex, systolic blood pressure, and creatinine. Heart failure with preserved ejection fraction was associated with an increased inflammatory signal (IL6, IL8, and MCP1), an increased fibrotic signal (PIIINP and CITP), and an increased matrix turnover signal (MMP2 and MMP9). Alterations in MMP and TIMP enzymes were found to be significant indicators of greater degrees of asymptomatic left ventricular diastolic dysfunction.

CONCLUSION: These data define varying fibro-inflammatory profiles throughout different stages of HHD. In particular, the observations on MMP9 and TIMP1 raise the possibility of earlier detection of those at risk of evolution to HF which may help focus effective preventative strategies.