2 resultados para guanabenz


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clonidine mydriasis model in rats has been widely applied in preclinical research to characterize a -adrenoceptor antagonistic properties of drugs. The present study was undertaken to pharmacologically determine if imidazoline I receptors are also involved in this model system. Sigmoid dose-response curves for pupillary dilation were produced in pentobarbital anesthetized rats by intravenous administration of increasing doses of agonists (guanabenz for a -adrenoceptors, clonidine for both a - adrenoceptors and imidazoline I receptors, and rilmenidine for imidazoline I receptors). Two antagonists (RS 79948 for a -adrenoceptors and efaroxan for imidazoline I receptors) were used to antagonize the mydriasis elicited by those three agonists, with antagonistic potencies calculated. In additional experiments, we examined the effect of the selective imidazoline I receptor antagonist, AGN 192403, on clonidine-induced mydriasis. The results showed that pupillary response curves elicited by guanabenz, clonidine and rilmenidine were competitively antagonized by both RS 79948 (0.03-1 mg/kg) and efaroxan (0.03-1 mg/kg) in a dose-related fashion. The potencies of either antagonist against the three agonists were not significantly different. AGN 192403 (5 mg/kg) did not significantly shift the clonidine mydriasis curve. These results suggest that imidazoline I receptors are not functionally involved in the rat clonidine mydriasis model and support this in vivo system as a useful model for studies of a -adrenoceptors. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin (5-HT) receptor agonists have been reported to produce mydriasis in mice, and miosis in rabbits and humans. However, the underlying mechanisms for this action are unclear. This study was undertaken in an attempt to explore the mechanism by which 5-HT receptors are involved in the modulation of pupillary size in pentobarbital-anesthetized rats. Intravenous administration of the 5-HT receptor agonist, (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.003-3 mg/kg), elicited dose-dependent pupillary dilation, which was not affected by section of the preganglionic cervical sympathetic nerve. 8-OH-DPAT-elicited mydriatic responses were attenuated by the selective 5-HT receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2- pyridinylcyclohexanecarboxamide maleate (WAY 100635; 0.3-1 mg/kg, i.v.), as well as by the selective a -adrenoceptor antagonist, (8aR,12aS,13aS)-5,8,8a,9,10,11,12,12a,13,13a-dechydro-3-methoxy-12- (ethylsulfonyl)-6H-isoquino[2,1-g][1,6]naphthyridine hydrochloride (RS 79948; 0.3 mg/kg, i.v.), but not by the selective a -adrenoceptor antagonist, prazosin (0.3 mg/kg, i.v.). Mydriatic responses elicited by the a -adrenoceptor agonist, guanabenz (0.003-0.3 mg/kg, i.v.), were not antagonized by WAY 100635 (0.3-1 mg/kg, i.v.). To determine whether central nervous system (CNS) 5-HT receptors, like a -adrenoceptors, are involved in reflex mydriasis, voltage response curves of pupillary dilation were constructed by stimulation of the sciatic nerve in anesthetized rats. WAY 100635 (1 mg/kg, i.v.) did not antagonize the evoked reflex mydriasis, which, however, was blocked by RS 79948 (0.3 mg/kg, i.v.). Taken together, these results suggest that 8-OH-DPAT produces pupillary dilation in anesthetized rats by stimulating CNS 5-HT receptors, which in turn trigger the release of norepinephrine, presumably from the locus coeruleus. The latter reduces parasympathetic neuronal tone to the iris sphincter muscle by stimulation of postsynaptic a - adrenoceptors within the Edinger-Westphal nucleus. Unlike a - adrenoceptors, 5-HT receptors in the CNS do not mediate reflex mydriasis evoked by sciatic nerve stimulation. © 2004 Elsevier B.V. All rights reserved.