51 resultados para grazing rotation
Resumo:
Natural landscape boundaries between vegetation communities are dynamically influenced by the selective grazing of herbivores. Here we show how this may be an emergent property of very simple animal decisions, without the need for any sophisticated choice rules etc., using a model based on biased diffusion. Animal grazing intensity is coupled with plant competition, resulting in reaction-diffusion dynamics, from which stable boundaries spontaneously emerge. In the model, animals affect their resources by both consumption and trampling. It is assumed that forage consists of two heterogeneously distributed competing resource species, one that is preferred (grass) over the other (heather) by the animals. The solutions to the resulting system of differential equations for three cases a) optimal foraging, b) random walk foraging and c) taxis-diffusion are presented. Optimal and random foraging gave unrealistic results, but taxis-diffusion accorded well with field observations. Persistent boundaries between patches of near-monoculture vegetation were predicted, with these boundaries drifting in response to overall grazing pressure (grass advancing with increased grazing and vice versa). The reaction-taxis-diffusion model provides the first mathematical explanation for such vegetation mosaic dynamics and the parameters of the model are open to experimental testing.
Resumo:
We present time-series data on Jupiter Family Comets (JFCs) 17P/Holmes, 47P/Ashbrook-Jackson and 137P/Shoemaker-Levy 2. In addition we also present results from `snap-shot' observations of comets 43P/Wolf-Harrington, 44P/Reinmuth 2, 103P/Hartley 2 and 104P/Kowal 2 taken during the same run. The comets were at heliocentric distances of between 3 and 7 au at this time. We present measurements of size and activity levels for the snap-shot targets. The time-series data allow us to constrain rotation periods and shapes, and thus bulk densities. We also measure colour indices (V - R) and (R - I) and reliable radii for these comets. We compare all of our findings to date with similar results for other comets and Kuiper Belt Objects (KBOs). We find that the rotational properties of nuclei and KBOs are very similar, that there is evidence for a cut-off in bulk densities at ~0.6 g cm-3 in both populations, and the colours of the two populations show similar correlations. For JFCs, there is no observational evidence for the optical colours being dependent on either position in the orbit or orbital parameters.
Resumo:
A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have studied the optical spectra of a sample of 31 O- and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v(r) sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v(r)) distribution that can be characterised by a mean velocity of about 160-190 km s(-1) and an effective half width of 100-150 km s(-1). The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring vr. The mass loss rates of the SMC objects having luminosities of log L-star/L-circle dot greater than or similar to 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine. M accurately from the optical spectrum. Three targets were classified as Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.
Resumo:
Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the “The Great North American Drought of 1988”. Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.
Resumo:
Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.
Resumo:
Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg, and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to similar to 300 km s(-1) using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen-enriched intrinsic slow rotators (nu sin i less than or similar to 50 km s(-1)) incompatible with our models (similar to 20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (dex) fast rotators (log g < 3.7 dex) that are relatively unenriched (a further similar to 20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen-burning main sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields is required to understand the surface properties of a population of massive main- sequence stars.
Resumo:
Here, we describe a motion stimulus in which the quality of rotation is fractal. This makes its motion unavailable to the translationbased motion analysis known to underlie much of our motion perception. In contrast, normal rotation can be extracted through the aggregation of the outputs of translational mechanisms. Neural adaptation of these translation-based motion mechanisms is thought to drive the motion after-effect, a phenomenon in which prolonged viewing of motion in one direction leads to a percept of motion in the opposite direction. We measured the motion after-effects induced in static and moving stimuli by fractal rotation. The after-effects found were an order of magnitude smaller than those elicited by normal rotation. Our findings suggest that the analysis of fractal rotation involves different neural processes than those for standard translational motion. Given that the percept of motion elicited by fractal rotation is a clear example of motion derived from form analysis, we propose that the extraction of fractal rotation may reflect the operation of a general mechanism for inferring motion from changes in form.
Resumo:
The role of limpet grazing in preventing the development of algal canopies is a recurrent theme in intertidal ecology. Less is known about interactions of limpets with the long-term dynamics of established canopies. Aerial photographs indicate that intertidal canopy cover has declined over the past 44 yr in Strangford Lough, Northern Ireland. There has been a loss of the previously continuous cover of Ascophyllum nodosum (L.) Le Jolis in the mid-shore. A barnacles dominated assemblage now fills gaps in the A. nodosum canopy. The rates at which barnacle patches become established and grow have increased since 1990. Changes in canopy cover have been accompanied by increases in limpet densities since the 1980s. Measurements between 2003 and 2004 showed no increase in length of A. nodosum fronds when limpets Patella vulgata had access to the algal holdfasts. In contrast, when limpets were experimentally excluded from the holdfasts, there was net frond growth. In the Isle of Man, which is climatically similar to Strangford Lough but has fewer limpets, growth occurred regardless of limpet grazing. The breaking force for A. nodosum declined with increasing local densities of limpets. A. nodosum is a sheltered shore species, potentially vulnerable to changes in wave exposure. There is no evidence, however, that Strangford Lough has become windier over the past 3 decades. Variation in wave exposure among locations within the lough was not related to rates of barnacle patch creation or expansion, Limpet population density has increased following a series of mild winters. Climate change may have a role in causing canopy loss, not by direct effects on the limpet populations.
Resumo:
1. We examine whether various measures of herbivore current physiological state (age, breeding and immune status) and genetic potential can be used as indicators of exposure to and risk from disease. We use dairy cattle and the risks of tuberculosis (TB) transmission posed to them by pasture contaminated with badger excreta (via the fecal-oral route) as a model system to address our aim.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of
Resumo:
The reconstruction and structure of the European Holocene “wildwood” has been the focus of considerable academic debate. The ability of palaeoecological data and particularly pollen analysis to accurately reflect the density of wildwood canopy has also been widely discussed. Fossil insects, as a proxy for vegetation and landscape structure, provide a potential approach to address this argument. Here, we present a review and re-analysis of 36 early and mid-Holocene (9500-2000 cal BC) sub-fossil beetle assemblages from Britain, examining percentage values of tree, open ground and dung beetles as well as tree host data to gain an insight into vegetation structure, the role of grazing animals in driving such structure and establish independently the importance of different types of trees and associated shading in the early Holocene “wildwood”. Open indicator beetle species are persistently present over the entire review period, although they fluctuate in importance. During the early Holocene (9500-6000 cal BC), these indicators are initially high, at levels which are not dissimilar to modern data from pasture woodland. However, during the latter stages of this and the next period, 6000-4000 cal BC, open ground and pasture indicators decline and are generally low compared with previously. Alongside this pattern, we see woodland indicators generally increase in importance, although there are significant local fluctuations. Levels of dung beetles are mostly low over these periods, with some exceptions to this pattern, especially towards the end of the Mesolithic and in floodplain areas. Host data associated with the fossil beetles indicate that trees associated with lighter canopy conditions such as oak, pine, hazel and birch are indeed important components of the tree canopy during the earlier Holocene (c. 9500-6000 cal BC), in accordance with much of the current pollen literature. Beetles associated with more shade-tolerant trees (such as lime and elm) become more frequent in the middle Holocene (6000-4000 cal BC) suggesting that at this stage the woodland canopy was less open than previously, although open ground and pasture areas appear to have persisted in some locations. The onset of agriculture (4000-2000 cal BC) coincides with significant fluctuations in woodland composition and taxa. This is presumably as a result of human impact, although here there are significant regional variations. There are also increases in the amounts of open ground represented and especially in the levels of dung beetles present in faunas, suggesting there is a direct relationship between the activities of grazing animals and the development of more open areas. One of the most striking aspects of this review is the variable nature of the landscape suggested by the palaeoecological data, particularly but not exclusively with the onset of agriculture: some earlier sites indicate high variability between levels of tree-associated species on the one hand and the open ground beetle fauna on the other, indicating that in some locations, open areas were of local significance and can be regarded as important features of the Holocene landscape. The role of grazing animals in creating these areas of openness was apparently minimal until the onset of the Neolithic.