6 resultados para graph analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, we introduce a notion of a style representing abstract, complex objects having characteristics that can be represented as structured objects. Furthermore, we provide some mathematical properties of such styles. As a main result, we present a novel approach to perform a meaningful comparative analysis of such styles by defining and using graph-theoretic measures. We compare two styles by comparing the underlying feature sets representing sets of graph structurally. To determine the structural similarity between the underlying graphs, we use graph similarity measures that are computationally efficient. More precisely, in order to compare styles, we map each feature set to a so-called median graph and compare the resulting median graphs. As an application, we perform an experimental study to compare special styles representing sets of undirected graphs and present numerical results thereof. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.

Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.

Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.