3 resultados para grafene CVD schiume


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cardiac rehabilitation (CR) programmes offering secondary prevention for cardiovascular disease (CVD) advise healthy lifestyle behaviours, with the behaviour change techniques (BCTs) of goals and planning, feedback and monitoring, and social support recommended. More information is needed about BCT use in home-based CR to support these programmes in practice.

AIM: To identify and describe the use of BCTs in home-based CR programmes.

DESIGN AND SETTING: Randomised controlled trials of home-based CR between 2005 and 2015 were identified by searching MEDLINE(®), Embase, PsycINFO, Web of Science, and Cochrane Database.

METHOD: Reviewers independently screened titles and abstracts for eligibility. Relevant data, including BCTs, were extracted from included studies. A meta-analysis studied risk factor change in home-based and comparator programmes.

RESULTS: From 2448 studies identified, 11 of good methodological quality (10 on post-myocardial infarction, one on heart failure, 1907 patients) were included. These reported the use of 20 different BCTs. Social support (unspecified) was used in all studies and goal setting (behaviour) in 10. Of the 11 studies, 10 reported effectiveness in reducing CVD risk factors, but one study showed no improvement compared to usual care. This study differed from effective programmes in that it didn't include BCTs that had instructions on how to perform the behaviour and monitoring, or a credible source.

CONCLUSION: Social support and goal setting were frequently used BCTs in home-based CR programmes, with the BCTs related to monitoring, instruction on how to perform the behaviour, and credible source being included in effective programmes. Further robust trials are needed to determine the relative value of different BCTs within CR programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon films were energetically deposited onto copper and nickel foil using a filtered cathodic vacuum arc deposition system. Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–visible spectroscopy showed that graphene films of uniform thickness with up to 10 layers can be deposited onto copper foil at moderate temperatures of 750 C. The resulting films, which can be prepared at high deposition rates, were comparable to graphene films grown at 1050 C using chemical vapour deposition (CVD). This difference in growth temperature is attributed to dynamic annealing which occurs as the film grows from the energetic carbon flux. In the case of nickel substrates, it was found that graphene films can also be prepared at moderate substrate temperatures. However much higher carbon doses were required, indicating that the growth mode differs between substrates as observed in CVD grown graphene. The films deposited onto nickel were also highly non uniform in thickness, indicating that the grain structure of the nickel substrate influenced the growth of graphene layers. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.