6 resultados para gas phase oxidative cracking
Resumo:
Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed under flow conditions at elevated temperatures. Comparing the activity of the reforming process as a function of temperature under dark and irradiated conditions shows a significant enhancement in the rate of H2 production using the photo-assisted conditions at temperatures between 100-140 °C. At higher temperatures, the effect of irradiation is small with the process dominated by the thermal process. Deactivation of the catalyst was observed under irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C. Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the activity of the catalyst could be correlated with the presence of the photogenerated trapped electrons. In addition, lower amounts of CO adsorbed on Pt, compared to those observed in the dark reaction, were found for the UV-irradiated systems. It is proposed that CO and adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process and this is further supported by the observation that, before and after the regeneration process in O2, the CO and surface adsorbed organic intermediate products are removed and the activity is recovered.
Resumo:
A selected ion flow tube study of the reactions of a series of gas-phase atomic cations (S+, Xe+, O+, Kr+, N+, Ar+ and Ne+) and molecular ions (SF n+ (n = 1-5), CFn+ (n = 1-3), CF2Cl+, H3O+, NO+, N 2O+, CO2+, CO+, and N2+) spanning a large range of recombination energies (6.3-21.6 eV), with acetone, 1,1,1-trifluoroacetone, and hexafluoroacetone has been undertaken with the objective of exploring the nature of the reaction ion chemistry as the methyl groups in acetone are substituted for CF3. The reaction rate coefficients and product ion branching ratios for all 66 reactions, measured at 298 K, are reported. The experimental reaction rate coefficients are compared to theoretically calculated collisional values. Several distinct reaction processes were observed among the large number of reactions studied, including charge transfer (non-dissociative and dissociative), abstraction, ion-molecule associations and, in the case of the reactions involving the reagent ion H3O+, proton transfer.
Resumo:
When organic esters or alcohols were dissolved in each of three novel ionic liquids (which have no effective vapour pressure), the vapour–liquid equilibria (as measured by infrared spectroscopy of the gas phase) revealed significant positive deviation from Raoult’s law for a wide range of perfume raw materials. The addition of water amplified the repulsive effect of the ionic liquid matrix, and this was exemplified by a series of ternary phase diagrams
Resumo:
A Fourier transform infrared gas-phase method is described herein and capable of deriving the vapour pressure of each pure component of a poorly volatile mixture and determining the relative vapour phase composition for each system. The performance of the present method has been validated using two standards (naphthalene and ferrocene), and a Raoult’s plot surface of a ternary system is reported as proof-of-principle. This technique is ideal for studying solutions comprising two, three, or more organic compounds dissolved in ionic liquids as they have no measurable vapour pressures.
Resumo:
A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2-alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.