19 resultados para gamma-Aminobutyric Acid
Resumo:
It has recently been demonstrated that patients with Angelman's syndrome who exhibited a deletion on cytogenetic tests show more severe clinical pictures with drug-resistant epilepsy than patients with Angelman's syndrome not carrying the deletion. To verify if this difference in clinical severity can be attributed to genes for the three gamma-aminobutyric acid (GABA)A receptor subunits (GABRB3, GABRA5, GABRG3) located in the deleted region, a possible modification of peripheral markers of the GABAergic system was investigated in 12 subjects with Angelman's syndrome and 20 age-matched subjects (8 with idiopathic epilepsy and 12 not affected by neurologic diseases). The results confirmed a more severe clinical picture, and epilepsy syndrome in particular, in Angelman's syndrome patients with deletions versus patients without deletions. In contrast, biochemical study (based on dosage of plasma levels of GABA and diazepam binding inhibitor, an endogenous ligand of GABAA and peripheral benzodiazepine receptors, showed contradictory results: patients with Angelman's syndrome showed significantly higher levels of GABA and diazepam binding inhibitor than patients without neurologic impairment but significantly lower levels than epileptic controls.
Resumo:
The two major incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP), are currently being considered as prospective drug candidates for treatment of type 2 diabetes. Interest in these gut hormones was initially spurred by their potent insulinotropic activities, but a number of other antihyperglycaemic actions are now established. One of the foremost barriers in progressing GLP-1 and GIP to the clinic concerns their rapid degradation and inactivation by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV). Here, we compare the DPP IV resistance and biological properties of Abu(8)/ Abu(2) (2-aminobutyric acid) substituted analogues of GLP-1 and GIP engineered to impart DPP IV resistance. Whereas (Abu(8))GLP-1 was completely stable to human plasma (half-life > 12h), GLP-1, GIP, and (Abu(2))GIP were rapidly degraded (half-lives: 6.2, 6.0, and 7.1 h, respectively). Native GIP, GLP-1, and particularly (Abu(8))GLP-1 elicited significant adenylate cyclase and insulinotropic activity, while (Abu(2))GIP was less effective. Similarly, in obese diabetic (ob/ob) mice, GIP, GLP-1, and (Abu(8))GLP-1 displayed substantial glucose-lowering and insulin -releasing activities, whereas (Abu(2))GIP was only weakly active. These studies illustrate divergent effects of penultimate amino acid Ala(8)/Ala(2) substitution with Abu on the biological properties of GLP-1 and GIP, suggesting that (Abu(8))GLP-1 represents a potential candidate for future therapeutic development. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We tested four genes [phenylalanine hydroxylase (PAH), the serotonin transporter (SLC6A4), monoamine oxidase B (MAOB), and the gamma-aminobutyric acid A receptor beta-3 subunit (GABRB3)] for their impact on five schizophrenia symptom factors: delusions, hallucinations, mania, depression, and negative symptoms. In a 90 family subset of the Irish Study of High Density Schizophrenia Families, the PAH 232 bp microsatellite allele demonstrated significant association with the delusions factor using both QTDT (F = 8.0, p = .031) and QPDTPHASE (chi-square = 12.54, p = .028). Also, a significant association between the GABRB3 191 bp allele and the hallucinations factor was detected using QPDTPHASE (chi-square 15.51, p = .030), but not QTDT (chi-square = 2.07, p = .560). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean+/-S.D.) in M. expansa anterior region was 124.8+/-15.3 picomole/mg wet weight, while in F. hepatica it was 16.8+/-4.9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.
Resumo:
Purpose: To investigate the role of γ-aminobutryic acid (GABA) in the regulation of arteriolar diameter in the rat retina.
Methods.: The actions of GABA on arteriolar diameter were examined using ex vivo retinal whole-mount preparations and isolated vessel segments. In most experiments, arterioles were partially preconstricted with endothelin (Et)-1. The expression levels of GABAA and GABAB receptors on isolated rat retinal Müller cells were assessed by immunohistochemistry.
Results.: GABA (0.1–1 mM) evoked vasodilation or vasoconstriction of arterioles in whole-mount preparations. No such effects were observed with isolated vessel segments. In whole mount samples, the GABAA receptor agonist muscimol caused vasomotor responses in only a small proportion of vessels. In contrast, arteriolar responses to the GABAB receptor agonists baclofen and SKF97541 more closely resembled those observed with GABA. No responses were seen with the GABAC receptor agonist 5-methylimidazoleacetic acid. GABA-induced vasodilator responses were, for the most part, repeatable in the presence of the GABAA receptor antagonist bicuculline. These responses, however, were completely blocked in the presence of the GABAB receptor inhibitor 2-hydroxysaclofen. Strong immunolabeling for both GABAA and GABAB receptors was detected in isolated Müller cells. In the absence of Et-1–induced preconstriction, most vessels were unresponsive to bicuculline or 2-hydroxysaclofen.
Conclusions.: GABA exerts complex effects on arteriolar diameter in the rat retina. These actions appear largely dependent upon the activation of GABAB receptors in the retinal neuropile, possibly those located on perivascular Müller cells. Despite these findings, endogenous GABA appears to contribute little to the regulation of basal arteriolar diameter in the rat retina.
Resumo:
Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.
Resumo:
Fluorescent PET (photoinduced electron transfer) sensor 1 with monoaza-18-crown-6 ether and guanidinium receptor units shows a significant fluorescence enhancement with y-aminobutyric acid (GABA) in mixed aqueous solution.
Resumo:
Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) has significant potential in diabetes therapy due to its ability to serve as a glucose-dependent activator of insulin secretion. However, its biological activity is severely compromised by the ubiquitous enzyme dipeptidylpeptidase IV (DPP IV), which removes the N-terminal Tyr(1)-Ala(2) dipeptide from GIP. Therefore, 2 novel N-terminal Ala(2)-substituted analogs of GIP, with Ala substituted by 2-aminobutyric acid (Abu) or sarcosine (Sar), were synthesized and tested for metabolic stability and biological activity both in vitro and in vivo. Incubation with DPP IV gave half-lives for degradation of native GIP, (Abu(2))GIP, and (Sar(2))GIP to be 2.3, 1.9, and 1.6 hours, respectively, while in human plasma, the half-lives were 6.2, 7.6, and 5.4 hours, respectively. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, native GIP, (Abu(2))GIP, and (Sar(2))GIP dose-dependently stimulated cyclic adenosine monophosphate (camp) production with EC50 values of 18.2, 38.5, and 54.6 nmol/L, respectively. In BRIN-BD11 cells, both (Abu(2))GIP and (Sar(2))GIP (10(-13) to 10(-8) mol/L) dose-dependently stimulated insulin secretion with significantly enhanced effects at 16.7 mmol/L compared with 5.6 mmol/L glucose. In obese diabetic (ob/ob) mice, GIP and (Sar(2))GIP significantly increased (1.4-fold to 1.5-fold; P <.05) plasma insulin concentrations, whereas (Abu(2))GIP exerted only minor effects. Changes in plasma glucose were small reflecting the severe insulin resistance of this mutant. The present data show that substitution of the penultimate N-terminal Ala(2) in GIP by Abu or Sar results in analogs with moderately reduced metabolic stability and biological activity in vitro, but with preserved biological activity in vivo. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The hormone glucagonlike peptide-1(736)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucosedependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidylpeptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the epsilon-amino group in the side chain of the Lys(26) residue and to combine this modification with substitutions of the Ala(8) residue, namely Val or aminobutyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val(8),Lys(pal)(26)]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal beta-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val(8),Lys(pal)(26)]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val8,Lys(pal)26]GLP-1 did not demonstrate acute glucoselowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability.
Resumo:
For the first time, a simple and validated reversed-phase liquid chromatography (RP-LC) with fluorescence detection has been developed for the simultaneous analysis of glutamate (Glu), ?-aminobutyric acid (GABA), glycine (Gly) and taurine (Tau) in Wistar and tremor rats brain synaptosomes. The samples were separated on a C18 analytical column with gradient elution of methanol and 0.1 mol L-1 potassium acetate at a flow rate of 1 mL min-1. Total run time was approximately 25 min. All calibration curves exhibited good linearity (r 2 > 0.999) within test ranges. The reproducibility was estimated by intra-and inter-day assays and RSD values were less than 2.48%. The recoveries were between 96.32 and 105.21%. The method was successfully applied to the quantification of amino acids in Wistar and tremor rats brain synaptosomes. Through this developed protocol, the levels of Glu in hippocampal and prefrontal cortical synaptosomes of tremor rats were both significantly elevated than those of adult Wistar rats whereas significantly decreased concentrations of GABA and Gly were observed in the hippocampal region of tremor rats without evident difference in the prefrontal cortex between experimental and control groups. In addition, our studies also showed a marked elevation of Tau in tremor rats hippocampal synaptosomes although there was no pronounced difference in the prefrontal cortical region of Wistar and tremor rats.
Resumo:
PURPOSE. We conducted a genome-wide association study to identify genetic factors that contribute to the etiology of heterophoria.
METHODS. We measured near and far vertical and horizontal phorias in 988 healthy adults aged 16 to 40 using the Keystone telebinocular with plates 5218 and 5219. We regressed degree of phoria against genotype at 642758 genetic loci. To control for false positives, we applied the conservative genome-wide permutation test to our data.
RESULTS. A locus at 6p22.2 was found to be associated with the degree of near horizontal phoria (P = 2.3 × 10 ). The P value resulting from a genome-wide permutation test was 0.014.
CONCLUSIONS. The strongest association signal arose from an intronic region of the gene ALDH5A1, which encodes the mitochondrial enzyme succinic semialdehyde dehydrogenase (SSADH), an enzyme involved in γ-aminobutyric acid metabolism. Succinic semialdehyde dehydrogenase deficiency, resulting from mutations of ALDH5A1, causes a variety of neural and behavioral abnormalities, including strabismus. Variation in ALDH5A1 is likely to contribute to degree of horizontal phoria.
Resumo:
AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.
RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.
INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.
Resumo:
Ionic liquid stabilized gold(III) chloride is shown to be a very active catalyst in the cyclization of sterically hindered and unhindered acetylenic carboxylic acid substrates even in the absence of a base.
Resumo:
A radioiodinated ligand, [125I]SB-236636 [(S)-(-)3-[4-[2-[N-(2-benzoxazolyl)-N-methylamino]ethoxy]3-[125I]iodophenyl]2-ethoxy propanoic acid], which is specific for the ? isoform of the peroxisomal proliferator activated receptor (PPAR?), was developed. [125I]SB-236636 binds with high affinity to full-length human recombinant PPAR?1 and to a GST (glutathione S-transferase) fusion protein contg. the ligand binding domain of human PPAR?1 (KD = 70 nM). Using this ligand, the authors characterized binding sites in adipose-derived cells from rat, mouse and humans. In competition expts., rosiglitazone (BRL-49653), a potent antihyperglycemic agent, binds with high affinity to sites in intact adipocytes (IC50 = 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, resp.). Binding affinities (IC50) of other thiazolidinediones for the ligand binding domain of PPAR?1 were comparable with those detd. in adipocytes and reflected the rank order of potencies of these agents as stimulants of glucose transport in 3T3-L1 adipocytes and antihyperglycemic agents in vivo: rosiglitazone > pioglitazone > troglitazone. Competition of [125I]SB-236636 binding was stereoselective in that the IC50 value of SB-219994, the (S)-enantiomer of an ?-trifluoroethoxy propanoic acid insulin sensitizer, was 770-fold lower than that of SB-219993 [(R)-enantiomer] at recombinant human PPAR?1. The higher binding affinity of SB-219994 also was evident in intact adipocytes and reflected its 100-fold greater potency as an antidiabetic agent. The results strongly suggest that the high-affinity binding site for [125I]SB-236636 in intact adipocytes is PPAR? and that the pharmacol. of insulin-sensitizer binding in rodent and human adipocytes is very similar and, moreover, predictive of antihyperglycemic activity in vivo.