86 resultados para games in partition function form
Resumo:
The major components of blood vessels are the vascular endothelium and its supporting smooth muscle. Significant strides have been made in the understanding of the cellular and molecular biology of these two cell types and in particular their interactions have been the subject of much interest and debate over the past two decades. The vascular endothelium is now known to profoundly influence the synthetic and motor functions of the underlying smooth muscle and participate in the pathogenesis of all the major vascular disorders. Similarly, the vascular smooth muscle has important effects on the overlying endothelium, and any disruption in the cellular physiology of either cell type can result in dysfunction with important effects on blood flow and vascular permeability The majority of this accumulated knowledge relates to the vascular cells of the macrocirculation. Pericytes are the supporting cells of the microvasculature and a body of evidence is now available to show that similar regulatory mechanisms and vessel-wall cross-talk exists between these cells and the microvascular endothelium. Nowhere are these interactions more important than in the retinal microcirculation where autoregulation is vital for the maintenance of smooth and uninterrrupted blood flow. This review focuses on the interactions between retinal microvascular endothelial cells and their associated pericytes and examines the role of the endothelial cell and the pericyte in the pathogenesis of disease.
Resumo:
We study what coalitions form and how the members of each coalition split the coalition value in coalitional games in which only individual deviations are allowed. In this context we employ three stability notions: individual, contractual, and compensational stability. These notions differ in terms of the underlying contractual assumptions. We characterize the coalitional games in which individually stable outcomes exist by means of the top-partition property. Furthermore, we show that any coalition structure of maximum social worth is both contractually and compensationally stable.
Resumo:
Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.
Resumo:
Investment in immunity is costly, so that resource-based trade-offs between immunity and sexually selected ornaments might be expected. The amount of resources that an individual can invest in each trait will be limited by the total resources available to them. It would therefore be informative to investigate how investment in immune function changes during growth or production of the sexual trait as resources are diverted to it. Using the dung beetle, Onthophagus taurus, which displays both sexual and male dimorphism in horn size, we examined changes in one measure of immune function, phenoloxidase (PO) activity, in the hemolymph of larvae prior to and during horn growth. We found that PO levels differed between small- and large-horned males throughout the final instar prior to the point where investment in horn growth was taking place. PO levels in females were intermediate to the 2 male morphs. These differences could not be accounted for by differences in condition, measured as hemolymph protein levels and weight. We suggest that the observed differences might be associated with sex- and morph-specific variation in juvenile hormone levels.
Resumo:
Biochemical studies reveal that a conserved arginine residue (R37) at the centre of the 14 angstrom internal cavity of histone deacetylase (HDAC) 8 is important for catalysis and acetate affinity. Computational studies indicate that R37 forms multiple hydrogen bonding interactions with the backbone carbonyl oxygen atoms of two conserved glycine residues, G303 and G305, resulting in a 'closed' form of the channel. One possible rationale for these data is that water or product (acetate) transit through the catalytically crucial internal channel of HDAC8 is regulated by a gating interaction between G139 and G303 tethered in position by the conserved R37. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Perfect state transfer is possible in modulated spin chains [Phys. Rev. Lett. 92, 187902 (2004)], imperfections, however, are likely to corrupt the state transfer. We study the robustness of this quantum communication protocol in the presence of disorder both in the exchange couplings between the spins and in the local magnetic field. The degradation of the fidelity can be suitably expressed, as a function of the level of imperfection and the length of the chain, in a scaling form. In addition the time signal of fidelity becomes fractal. We further characterize the state transfer by analyzing the spectral properties of the Hamiltonian of the spin chain.
Resumo:
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4'-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4'-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4'-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coil resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three alpha-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended. © 2012 Elsevier Ltd. All rights reserved.