2 resultados para fuzzy based evaluation method
Resumo:
The machining of carbon fiber reinforced polymer (CFRP) composite presents a significant challenge to the industry, and a better understanding of machining mechanism is the essential fundament to enhance the machining quality. In this study, a new energy based analytical method was developed to predict the cutting forces in orthogonal machining of unidirectional CFRP with fiber orientations ranging from 0° to 75°. The subsurface damage in cutting was also considered. Thus, the total specific energy for cutting has been estimated along with the energy consumed for forming new surfaces, friction, fracture in chip formation and subsurface debonding. Experiments were conducted to verify the validity of the proposed model.
Resumo:
Several north temperate marine species were recorded on subtidal hard-substratum reef sites selected to produce a gradient of structural complexity. The study employed an established scuba-based census method, the belt transect. The three types of reef examined, with a measured gradient of increasing structural complexity, were natural rocky reef, artificial reef constructed of solid concrete blocks, and artificial reef made of concrete blocks with voids. Surveys were undertaken monthly over a calendar year using randomly placed fixed rope transects. For a number of conspicuous species of fish and invertebrates, significant differences were found between the levels of habitat complexity and abundance. Overall abundance for many of the species examined was 2-3 times higher on the complex artificial habitats than on simple artificial or natural reef habitats. The enhanced habitat availability produced by the increased structural complexity delivered through specifically designed artificial reefs may have the potential to augment faunal abundance while promoting species diversity.