3 resultados para functional equations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The finite state Markov-chain approximation methods developed by Tauchen (1986) and Tauchen and Hussey (1991) are widely used in economics, finance and econometrics to solve functional equations in which state variables follow autoregressive processes. For highly persistent processes, the methods require a large number of discrete values for the state variables to produce close approximations which leads to an undesirable reduction in computational speed, especially in a multivariate case. This paper proposes an alternative method of discretizing multivariate autoregressive processes. This method can be treated as an extension of Rouwenhorst's (1995) method which, according to our finding, outperforms the existing methods in the scalar case for highly persistent processes. The new method works well as an approximation that is much more robust to the number of discrete values for a wide range of the parameter space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.