36 resultados para free space
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated.
Resumo:
We propose the inverse Gaussian distribution, as a less complex alternative to the classical log-normal model, to describe turbulence-induced fading in free-space optical (FSO) systems operating in weak turbulence conditions and/or in the presence of aperture averaging effects. By conducting goodness of fit tests, we define the range of values of the scintillation index for various multiple-input multiple-output (MIMO) FSO configurations, where the two distributions approximate each other with a certain significance level. Furthermore, the bit error rate performance of two typical MIMO FSO systems is investigated over the new turbulence model; an intensity-modulation/direct detection MIMO FSO system with Q-ary pulse position modulation that employs repetition coding at the transmitter and equal gain combining at the receiver, and a heterodyne MIMO FSO system with differential phase-shift keying and maximal ratio combining at the receiver. Finally, numerical results are presented that validate the theoretical analysis and provide useful insights into the implications of the model parameters on the overall system performance. © 2011 IEEE.
Resumo:
1. Predator–prey interactions are mediated by the structural complexity of habitats, but disentangling the many facets of structure that contribute to this mediation remains elusive. In a world replete with altered landscapes and biological invasions, determining how structure mediates the interactions between predators and novel prey will contribute to our understanding of invasions and predator–prey dynamics in general.
2. Here, using simplified experimental arenas, we manipulate predator-free space, whilst holding surface area and volume constant, to quantify the effects on predator–prey interactions between two resident gammarid predators and an invasive prey, the Ponto-Caspian corophiid Chelicorophium curvispinum.
3. Systematically increasing predator-free space alters the functional responses (the relationship between prey density and consumption rate) of the amphipod predators by reducing attack rates and lengthening handling times. Crucially, functional response shape also changes subtly from destabilizing Type II towards stabilizing Type III, such that small increases in predator-free space to result in significant reductions in prey consumption at low prey densities.
4. Habitats with superficially similar structural complexity can have considerably divergent consequences for prey population stability in general and, particularly, for invasive prey establishing at low densities in novel habitats.
Resumo:
1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality
Resumo:
By modification of the classical retrodirective arrays (RDAs) architecture a directional modulation (DM) transmitter can be realized without the need for synthesis. Importantly, through analytical analysis and exemplar simulations, it is proved that, besides the conventional DM application scenario, i.e., secure transmission to one legitimate receiver located along one spatial direction in free space, the proposed synthesis-free DM transmitter should also perform well for systems where there are more than one legitimate receivers positioned along different directions in free space, and where one or more legitimate receivers exist in a multipath environment. None of these have ever been achieved before using synthesis-free DM arrangements.
Resumo:
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.
Resumo:
A real-time VHF swept frequency (20–300 MHz) reflectometry measurement for radio-frequency capacitive-coupled atmospheric pressure plasmas is described. The measurement is scalar, non-invasive and deployed on the main power line of the plasma chamber. The purpose of this VHF signal injection is to remotely interrogate in real-time the frequency reflection properties of plasma. The information obtained is used for remote monitoring of high-value atmospheric plasma processing. Measurements are performed under varying gas feed (helium mixed with 0–2% oxygen) and power conditions (0–40 W) on two contrasting reactors. The first is a classical parallel-plate chamber driven at 16 MHz with well-defined electrical grounding but limited optical access and the second is a cross-field plasma jet driven at 13.56 MHz with open optical access but with poor electrical shielding of the driven electrode. The electrical measurements are modelled using a lumped element electrical circuit to provide an estimate of power dissipated in the plasma as a function of gas and applied power. The performances of both reactors are evaluated against each other. The scalar measurements reveal that 0.1% oxygen admixture in helium plasma can be detected. The equivalent electrical model indicates that the current density between the parallel-plate reactor is of the order of 8–20 mA cm-2 . This value is in accord with 0.03 A cm-2 values reported by Park et al (2001 J. Appl. Phys. 89 20–8). The current density of the cross-field plasma jet electrodes is found to be 20 times higher. When the cross-field plasma jet unshielded electrode area is factored into the current density estimation, the resultant current density agrees with the parallel-plate reactor. This indicates that the unshielded reactor radiates electromagnetic energy into free space and so acts as a plasma antenna.
Resumo:
The purpose of this paper is to review recent developments in the design and fabrication of Frequency Selective Surfaces (FSS) which operate above 300 GHz. These structures act as free space electromagnetic filters and as such provide passive remote sensing instruments with multispectral capability by separating the scene radiation into separate frequency channels. Significant advances in computational electromagnetics, precision micromachining technology and metrology have been employed to create state of the art FSS which enable high sensitivity receivers to detect weak molecular emissions at THz wavelengths. This new class of quasi-optical filter exhibits an insertion loss
Resumo:
We present a simple method of forming a switchable radar cross-section (RCS) in evanescent waveguide.Here, the antenna can be selected to be matched to free space, or to act as an almost perfect reflector of incident energy via a single SPST switch located at the antenna aperture. With the aperture switch open, the antenna is matched over a measured bandwidth of 17.5%, from 2.35 to 2.8 GHz, for reflection coefficient <-10 dB, in 2.725 GHz cutoff waveguide. With the aperture switch closed, a minimum reflection coefficient of -2.5 dB across the bandwidth is observed, proving that the antenna has the capacity to be made RCS reconfigurable. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1849–1851, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26981
Resumo:
Free space transmission of an on-off modulated sinusoidal signal through a phase conjugating lens (PCL) is theoretically examined using a combined time/frequency domain approach. The on-off keyed (OOK) signal is generated by a dipole antenna located in the far-field zone of the lens. The PCL consists of a dual layer of antenna elements interconnected via phase conjugating circuitry. We demonstrate that electromagnetic interference between antenna elements creates spatially localised areas of good-quality reception and zones where the signal is significantly denigrated by interference. Next, it is shown that destructive interference and packet desynchronisation effects critically depend on bit rate. It is also shown that a circular concave lens can be used to produce high-quality signal reception in a given direction while suppressing signal reception in all other directions. The effect that the bandwidth of the phase conjugating unit has on the transmitted signal properties for the cases of high and low bit rate OOK modulation are studied and a signal quality characterisation scheme is proposed which uses cross-correlation. The results of the study yields understanding of the performance of phase conjugating arrays under OOK modulation. The work suggests a novel approach for realising a secure communication wireless system.
Resumo:
This article describes by means of a simple model how signal recombination effects behave under the influence of phase conjugating retrodirective array (RDA) technology. A two-ray ground reflection model is used to predict the operational advantages of RDA technology in multipath rich environments. The simulation results show that advantageous signal recombination occurs due to automatic self-phasing. As the number of elements in the RDA increases, the fading effect normally observed due to out of phase multipath signal is mitigated to the extent that the system approaches that of one operating in a free space environment. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1987–1989, 2013
Resumo:
In this paper we investigate the azimuthal pattern symmetry of an Archimedean spiral antenna which is designed to operate over the frequency range 3-10 GHz. The performance of the spiral in free space is compared with a structure that is backed by a perfect electric conductor with a separation distance of ?/4 at the operating frequencies. The latter arrangement exhibits a higher gain, however it is observed that the radiation patterns are less symmetrical about boresight and this performance degradation increases with frequency. The predicted 3 dB beamwidth difference is shown to vary between 14° (3 GHz) and 51° (10 GHz). An improved antenna design is described which reduces the pattern asymmetry to ˜ 2° at 10 GHz. The reduction in modal contamination is obtained by inserting slots carefully arranged in a radial pattern to disrupt the surface currents that flow on the ground plane of the antenna
Resumo:
In this paper we conduct a number of experiments to assess the impact of typical human body movements on the signal characteristics of outdoor body-to-body communications channels using flexible patch antennas. A modified log-distance path loss model which accounts for body shadowing and signal fading due to small movements is used to model the measured data. For line of sight channels, in which both ends of the body-to-body link are stationary, the path loss exponent is close to that for free space, although the received signal is noticeably affected by involuntary or physiological-related movements of both persons. When one person moves to obstruct the direct signal path between nodes, attenuation by the person's body can be as great as 40 dB, with even greater variation observed due to fading. The effects of movements such as rotation, tilt, walking in line of sight and non-line of sight on body-to-body communications channels are also investigated in this study. © 2011 IEEE.