69 resultados para fluctuating valence
Resumo:
Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.
Resumo:
Changing energy requirements and dramatic shifts in food availability are major factors driving behaviour and distribution of herbivores. We investigate this in wintering East Canadian High Arctic light-bellied brent geese Branta bernicla hrota in Northern Ireland. They followed a sequential pattern of habitat use, feeding on intertidal Zostera spp. in autumn and early winter before moving to predominantly saltmarsh and farmland in late winter and early spring. Night-time feeding occurred throughout and made a considerable contribution to the birds' daily energy budget, at times accounting for > 50% of energy intake. Nocturnal feeding, however, is limited to the intertidal, possibly because of predation risk on terrestrial habitat, and increases with moonlight. The amount of Zostera spp., declined dramatically after the arrival of birds, predominantly, but not entirely, due to consumption by the birds. Birds gained fat reserves in the first 2 months but then this was dramatically lost as their major food source collapsed and their daily energy intake declined. Single birds consistently fared worse than paired birds and pairs with juveniles fared better than those without suggesting a benefit of having a family to compete for food. Many birds leave the Lough at this time of reduced Zostera spp. for other sea inlets in Ireland but some remain. Body condition of the latter gradually improved in early spring and reflected a heavy reliance on terrestrial habitats, particularly farmland, to meet the birds' daily energy requirements. However, even in the period immediately before migration to the breeding ground, the birds did not regain the amount of abdominal fatness observed in November. The dramatic changes in available food and requirements of the birds drive the major changes seen in foraging behaviour as the birds evade starvation in the wintering period.
Resumo:
For many applications of emotion recognition, such as virtual agents, the system must select responses while the user is speaking. This requires reliable on-line recognition of the user’s affect. However most emotion recognition systems are based on turnwise processing. We present a novel approach to on-line emotion recognition from speech using Long Short-Term Memory Recurrent Neural Networks. Emotion is recognised frame-wise in a two-dimensional valence-activation continuum. In contrast to current state-of-the-art approaches, recognition is performed on low-level signal frames, similar to those used for speech recognition. No statistical functionals are applied to low-level feature contours. Framing at a higher level is therefore unnecessary and regression outputs can be produced in real-time for every low-level input frame. We also investigate the benefits of including linguistic features on the signal frame level obtained by a keyword spotter.
Resumo:
When recent experimental positronium (Ps) formation cross sections in noble gases have been compared with the most up-to date theoretical studies, the agreement is qualitative, but not quantitative. In this paper we re-examine this process and show that at low energies Ps formation must be treated non-perturbatively. We also look at Ps formation with inner shell electrons.
Resumo:
The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with an adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.
Fluctuating Levels Of Circulating VEGF In A Subset Of Patients As Part Of The Multicentre IVAN Study
Resumo:
Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.
Resumo:
Absolute cross-section measurements for valence-shell photoionization of Ar + ions are reported for photon energies ranging from 27.4 eV to 60.0 eV. The data, taken by merging beams of ions and synchrotron radiation at a photon energy resolution of 10 meV, indicate that the primary ion beam was a statistically weighted mixture of the 2P o3/2 ground state and the 2P o1/2 metastable state of Ar +. Photoionization of this Cell-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Observed resonance lineshapes indicate interference between indirect and direct photoionization channels. Resonance features are spectroscopically assigned and their energies and quantum defects are tabulated. The measurements are satisfactorily reproduced by theoretical calculations based on an intermediate coupling semi-relativistic Breit-Pauli approximation.
Resumo:
Photoionization cross-sections are obtained using the relativistic DiracAtomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the targetwavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.
Resumo:
We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in XUV-initiated high-harmonic generation in neon. By probing the atom with a low energy (below the 2s ionisation threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process.
Resumo:
The success of sequestration-based remediation strategies will depend on detailed information, including the predominant U species present as sources before biostimulation and the products produced during and after in situ biostimulation. We used X-ray absorption spectroscopy to determine the valence state and chemical speciation of U in sediment samples collected at a variety of depths through the contaminant plume at the Field Research Center at Oak Ridge, TN, before and after approximately 400 days of in situ biostimulation, as well as in duplicate bioreduced sediments after 363 days of resting conditions. The results indicate that U(VI) in subsurface sediments was partially reduced to 10–40% U(IV) during biostimulation. After biostimulation, U was no longer bound to carbon ligands and was adsorbed to Fe/Mn minerals. Reduction of U(VI) to U(IV) continued in sediment samples stored under anaerobic condition at <4 °C for 12 months, with the fraction of U(IV) in sediments more than doubling and U concentrations in the aqueous phase decreasing from 0.5-0.74 to <0.1 µM. A shift of uranyl species from uranyl bound to phosphorus ligands to uranyl bound to carbon ligands and the formation of nanoparticulate uraninite occurred in the sediment samples during storage.
Resumo:
We report cross sections for Ps(1s)-Li(2s) scattering in the energy range up to 30 eV. The calculations have been carried out in a coupled state approximation. The Ps states consist of both eigenstates and pseudostates. the latter to allow for ionization of the Ps. The atom is treated as a frozen core represented by it model potential which supports the valence orbitals. The coupled state expansion includes only the 2s and 2p states of the atom as well as in unphysical Is state which exists in the model potential. The inclusion of this Is state is necessary in order to avoid pronounced false pseudostructure. Results are presented for excitation and ionization of the Ps as well as collisions in which the Ps(1s) remains unchanged. These results also differentiate between the case where the Li(2s) remains unexcited and where it is excited to the 2p level. (c) 2005 Published by Elsevier B.V.
Resumo:
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.
Resumo:
Ab initio nonlocal pseudopotential variational quantum Monte Carlo techniques are used to compute the correlation effects on the valence momentum density and Compton profile of silicon. Our results for this case are in excellent agreement with the Lam-Platzman correction computed within the local density approximation. Within the approximations used, we rule out valence electron correlations as the dominant source of discrepancies between calculated and measured Compton profiles of silicon.
Resumo:
Using an ab initio pseudopotential calculation, we compute Compton profiles of silicon along the (100), (110), and (111) directions, and then reconstruct the pseudo-wave-functions to regain the oscillatory behavior of the all-electron valence wave functions near the atomic cores. We study the effect that this reconstruction has on the Compton profiles and their anisotropies. We find a decrease in the magnitude of the profiles at small wave vectors and in their anisotropies. These changes bring the theoretical predictions closer to experimental results.