8 resultados para first year students
Resumo:
Much research has focused on students’ transition from secondary school to university. Less is known about the transition from first to second year of a university degree programme. Given the difficulties that many students face at this stage of their education, research into the relevant factors is required. Through questionnaires and focus groups, views of second- and third-year aerospace and mechanical engineering students in our university have been gathered. A large majority believed that both the volume and difficulty of work increased in second year. Many stated that first year was slightly too trivial and could have been made more challenging to prepare them better for second year. Different teaching and assessment styles in second year were considered to affect attendance and performance. The survey revealed that students were generally very well settled into university life by the end of first year and were happy with their choice of course and only 23% reported that financial responsibilities have had a negative effect on their academic performance. Differences were observed between male and female students. Male students believed that transition was helped by having regular assessments and by worked examples in lectures. Females found the teaching staff were the most helpful factor for a successful transition. The results indicate that males require more structure and guidance whereas females are more independent and settle in better.
Resumo:
Introduction
This paper reports to an exercise in evaluating poster group work and poster presentation and the extra learning and skill acquisition that this can provide to nursing students, through a creative and stimulating assessment method. Much had been written about the benefits of using posters as an assessment method, yet there appears to be a lack of research that captures the student experience.
Aim
This evaluative study sought to evaluate the student experience by using a triangulation approach to evaluation:
Methodology
All students from the February 2015 nursing intake, were eligible to take part (80 students) of which 71 participated (n=71). The poster group presentations took place at the end of their first phase of year one teaching and the evaluation took place at the end of their first year as undergraduate. Evaluation involved;
1. Quantitative data by questionnaires
2. Qualitative data from focus group discussions
Results
A number of key themes emerged from analysis of the data which captured the “added value” of learning from the process of poster assessment including:
Professionalism: developing time keeping skills, presenting skills.
Academic skills: developing literature search, critic and reporting
Team building and collaboration
Overall 88% agreed that the process furnished them with additional skills and benefits above the actual production of the poster, with 97% agreeing that these additional skills are important skills for a nurse.
Conclusion
These results would suggest that the process of poster development and presentation furnish student nurses with many additional skills that they may not acquire through other types of assessment and are therefore beneficial. The structure of the assessment encourages a self-directed approach so students take control of the goals and purposes of learning. The sequential organization of the assessment guides students in the transition from dependent to self-directed learners.
Resumo:
Abstract
The quality of nursing home care for some remains a significant cause of concern. This paper explores and discusses some of the significant critiques and limitations to nursing home care within the UK, particularly and including end of life care. The paper also explores some of the international literature by way of comparison.
Aim
To identify some of the characteristics contributing to the quality of holistic care within nursing homes
Methods
Two short narratives drawn from the experiences of nursing home care within Northern Ireland. The narrators (and co-authors to the paper) are first year student nurses who are also employed (part-time) as carers within nursing homes
Results
The paper identifies evidence of good nursing and care, together with evident quality in end of life care within nursing homes. The paper addresses the context of nursing home care and explores significant characteristics that reflect in the delivery of holistic care to nursing home residents, including the important role of a `culture’ of care, ongoing and specialist training( particularly and including within end of life care) and the important impact in the quality of nursing home leadership.
The paper concludes with some short recommendations to better develop practice within nursing homes
Resumo:
Background The use of simulation in medical education is increasing, with students taught and assessed using simulated patients and manikins. Medical students at Queen’s University of Belfast are taught advanced life support cardiopulmonary resuscitation as part of the undergraduate curriculum. Teaching and feedback in these skills have been developed in Queen’s University with high-fidelity manikins. This study aimed to evaluate the effectiveness of video compared to verbal feedback in assessment of student cardiopulmonary resuscitation performance Methods Final year students participated in this study using a high-fidelity manikin, in the Clinical Skills Centre, Queen’s University Belfast. Cohort A received verbal feedback only on their performance and cohort B received video feedback only. Video analysis using ‘StudioCode’ software was distributed to students. Each group returned for a second scenario and evaluation 4 weeks later. An assessment tool was created for performance assessment, which included individual skill and global score evaluation. Results One hundred thirty eight final year medical students completed the study. 62 % were female and the mean age was 23.9 years. Students having video feedback had significantly greater improvement in overall scores compared to those receiving verbal feedback (p = 0.006, 95 % CI: 2.8–15.8). Individual skills, including ventilation quality and global score were significantly better with video feedback (p = 0.002 and p < 0.001, respectively) when compared with cohort A. There was a positive change in overall score for cohort B from session one to session two (p < 0.001, 95 % CI: 6.3–15.8) indicating video feedback significantly benefited skill retention. In addition, using video feedback showed a significant improvement in the global score (p < 0.001, 95 % CI: 3.3–7.2) and drug administration timing (p = 0.004, 95 % CI: 0.7–3.8) of cohort B participants, from session one to session two. Conclusions There is increased use of simulation in medicine but a paucity of published data comparing feedback methods in cardiopulmonary resuscitation training. Our study shows the use of video feedback when teaching cardiopulmonary resuscitation is more effective than verbal feedback, and enhances skill retention. This is one of the first studies to demonstrate the benefit of video feedback in cardiopulmonary resuscitation teaching.
Resumo:
Laboratory classes provide a visual and practical way of supplementing traditional teaching through lectures and tutorial classes. A criticism of laboratories in our School is that they are largely based on demonstration with insufficient participation by students. This provided the motivation to create a new laboratory experiment which would be interactive, encourage student enthusiasm with the subject and improve the quality of student learning.
The topic of the laboratory is buoyancy. While this is a key topic in the first-year fluids module, the laboratory has been designed in such a way that prior knowledge of the topic is unnecessary and therefore it would be accessible by secondary school pupils. The laboratory climaxes in a design challenge. However, it begins with a simple task involving students identifying some theoretical background information using given websites. They then have to apply their knowledge by developing some equations. Next, given some materials (a sheet of tinfoil, card and blu-tack), they have to design a vessel to carry the greatest mass without sinking. Thus, they are given an open-ended problem and have to provide a mathematical justification for their design. Students are expected to declare the maximum mass for their boat in advance of it being tested to create a sense of competition and fun. Overall, the laboratory involves tasks which begin at a low level and progressively get harder, incorporating understanding, applying, evaluating and designing (with reference to Bloom’s taxonomy).
The experiment has been tested in a modern laboratory with wall-mounted screens and access to the internet. Students enjoyed the hands-on aspect and thought the format helped their learning.
The use of cheap materials which are readily available means that many students can be involved at one time. Support documentation has been produced, both for the student participants and the facilitator. The latter is given advice on how to guide the students (without simply giving them the answer) and given some warning about potential problems the students might have.
The authors believe that the laboratory can be adapted for use by secondary school pupils and hope that it will be used to promote engineering in an engaging and enthusing way to a wider audience. To this end, contact has already been made with the Widening Participation Unit at the University to gain advice on possible next steps.
Resumo:
The angle concept is a multifaceted concept having static and dynamic definitions. The static definition of the angle refers to “the space between two rays” or “the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamic definition of the angle concept highlights that the size of angle is the amount of rotation in direction (Fyhn, 2006). Since both definitions represent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may hold misconceptions about the angle concept. In this regard, the aim of this research was to explore high achievers’ knowledge regarding the definition of the angle concept as well as to investigate their erroneous answers on the angle concept.
104 grade 6 students drawn from four well-established elementary schools of Yozgat, Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5, and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.
The angle concept is a multifaceted concept having static and dynamic definitions.The static definition of the angle refers to “the space between two rays” or“the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamicdefinition of the angle concept highlights that the size of angle is the amountof rotation in direction (Fyhn, 2006). Since both definitionsrepresent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may holdmisconceptions about the angle concept. In this regard, the aim of thisresearch was to explore high achievers’ knowledge regarding the definition ofthe angle concept as well as to investigate their erroneous answers on theangle concept.
104grade 6 students drawn from four well-established elementary schools of Yozgat,Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5,and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.
In the first question, students were asked to answer a multiple choice questions consisting of two statics definitions and one dynamic definition of the angle concept. Only 38 of 104 students were able to recognize these three definitions. Likewise, Mitchelmore and White (1998) investigated that less than10% of grade 4 students knew the dynamic definition of the angle concept. Additionally,the purpose of the second question was to figure out how well students could recognize 0-degree angle. We found that 49 of 104 students were unable to recognize MXW as an angle. While 6 students indicated that the size of MXW is0, other 6 students revealed that the size of MXW is 360. Therefore, 12 of 104students correctly answered this questions. On the other hand, 28 of 104students recognized the MXW angle as 180-degree angle. This finding demonstrated that these students have difficulties in naming the angles.Moreover, the third question consisted of three concentric circles with center O and two radiuses of the outer circle, and the intersection of the radiuses with these circles were named. Then, students were asked to compare the size of AOB, GOD and EOF angles. Only 36 of 104 students answered correctly by indicating that all three angles are equal, whereas 68 of 104 students incorrectly responded this question by revealing AOB<GOD< EOF. These students erroneously thought the size of the angle is related to either the size of the arc marking the angle or the area between the arms of the angle and the arc marking angle. These two erroneous strategies for determining the size of angles have been found by a few studies (Clausen-May,2008; Devichi & Munier, 2013; Kim & Lee, 2014; Mithcelmore, 1998;Wilson & Adams, 1992). The last question, whose aim was to determine how well students can adapt theangle concept to real life, consisted of an observer and a barrier, and students were asked to color the hidden area behind the barrier. Only 2 of 104students correctly responded this question, whereas 19 of 104 students drew rays from the observer to both sides of the barrier, and colored the area covered by the rays, the observer and barrier. While 35 of 104 students just colored behind the barrier without using any strategies, 33 of 104 students constructed two perpendicular lines at the both end of the barrier, and colored behind the barrier. Similarly, Munier, Devinci and Merle (2008) found that this incorrect strategy was used by 27% of students.
Consequently, we found that although the participants in this study were high achievers, they still held several misconceptions on the angle concept and had difficulties in adapting the angle concept to real life.
Keywords: the angle concept;misconceptions; erroneous answers; high achievers
ReferencesClausen-May, T. (2008). AnotherAngle on Angles. Australian Primary Mathematics Classroom, 13(1),4–8.
Devichi, C., & Munier, V.(2013). About the concept of angle in elementary school: Misconceptions andteaching sequences. The Journal of Mathematical Behavior, 32(1),1–19. http://doi.org/10.1016/j.jmathb.2012.10.001
Fyhn, A. B. (2006). A climbinggirl’s reflections about angles. The Journal of Mathematical Behavior, 25(2),91–102. http://doi.org/10.1016/j.jmathb.2006.02.004
Henderson, D. W., & Taimina,D. (2005). Experiencing geometry: Euclidean and non-Euclidean with history(3rd ed.). New York, USA: Prentice Hall.
Kim, O.-K., & Lee, J. H.(2014). Representations of Angle and Lesson Organization in Korean and AmericanElementary Mathematics Curriculum Programs. KAERA Research Forum, 1(3),28–37.
Mitchelmore, M. C., & White,P. (1998). Development of angle concepts: A framework for research. MathematicsEducation Research Journal, 10(3), 4–27.
Mithcelmore, M. C. (1998). Youngstudents’ concepts of turning and angle. Cognition and Instruction, 16(3),265–284.
Munier, V., Devichi, C., &Merle, H. (2008). A Physical Situation as a Way to Teach Angle. TeachingChildren Mathematics, 14(7), 402–407.
Wilson, P. S., & Adams, V.M. (1992). A Dynamic Way to Teach Angle and Angle Measure. ArithmeticTeacher, 39(5), 6–13.
Resumo:
This study aimed to explore prospective teachers’ performance on recognizing quadrilaterals with their special cases and constructing a hierarchical classification of them. The participants consisted of 44 freshmen studying at a public university’s elementary school mathematics education department. Data was collected with a question form containing two questions at the first day of the geometry course taught in the second term of the first year. For quantifying the data of the first question, while students who identify the prototypes of quadrilaterals and their special cases were given 1 and 2 points for each correct answer respectively, -1 point was given for each incorrect answer. The similarity index was employed to quantify students’ concept maps. We investigated that students could detect the prototypes of the quadrilaterals but not their special cases. Additionally, the similarity index between majority of freshmen’ concept maps and the referent map was found as low or moderate.
Resumo:
BACKGROUND: -There are few contemporary data on the mortality and morbidity associated with rheumatic heart disease (RHD) or information on their predictors. We report the two year follow-up of individuals with RHD from 14 low and middle income countries in Africa and Asia.
METHODS: -Between January 2010 and November 2012, we enrolled 3343 patients from 25 centers in 14 countries and followed them for two years to assess mortality, congestive heart failure (CHF), stroke or transient ischemic attack (TIA), recurrent acute rheumatic fever (ARF), and infective endocarditis (IE).
RESULTS: -Vital status at 24 months was known for 2960 (88.5%) patients. Two thirds were female. Although patients were young (median age 28 years, interquartile range 18 to 40), the two year case fatality rate was high (500 deaths, 16.9%). Mortality rate was 116.3/1000 patient-years in the first year and 65.4/1000 patient-years in the second year. Median age at death was 28.7 years. Independent predictors of death were severe valve disease (hazard ratio (HR) 2.36, 95% confidence interval (CI) 1.80-3.11), CHF (HR 2.16, 95% CI 1.70-2.72), New York Heart Association functional class III/IV (HR 1.67, 95% CI 1.32-2.10), atrial fibrillation (AF) (HR 1.40, 95% CI 1.10-1.78) and older age (HR 1.02, 95% CI 1.01-1.02 per year increase) at enrolment. Post-primary education (HR 0.67, 95% CI 0.54-0.85) and female sex (HR 0.65, 95%CI 0.52-0.80) were associated with lower risk of death. 204 (6.9%) had new CHF (incidence, 38.42/1000 patient-years), 46 (1.6%) had a stroke or TIA (8.45/1000 patient-years), 19 (0.6%) had ARF (3.49/1000 patient-years), and 20 (0.7%) had IE (3.65/1000 patient-years). Previous stroke and older age were independent predictors of stroke/TIA or systemic embolism. Patients from low and lower-middle income countries had significantly higher age- and sex-adjusted mortality compared to patients from upper-middle income countries. Valve surgery was significantly more common in upper-middle income than in lower-middle- or low-income countries.
CONCLUSIONS: -Patients with clinical RHD have high mortality and morbidity despite being young; those from low and lower-middle income countries had a poorer prognosis associated with advanced disease and low education. Programs focused on early detection and treatment of clinical RHD are required to improve outcomes.