99 resultados para field-programmable-gate-array
Resumo:
Dynamic power consumption is very dependent on interconnect, so clever mapping of digital signal processing algorithms to parallelised realisations with data locality is vital. This is a particular problem for fast algorithm implementations where typically, designers will have sacrificed circuit structure for efficiency in software implementation. This study outlines an approach for reducing the dynamic power consumption of a class of fast algorithms by minimising the index space separation; this allows the generation of field programmable gate array (FPGA) implementations with reduced power consumption. It is shown how a 50% reduction in relative index space separation results in a measured power gain of 36 and 37% over a Cooley-Tukey Fast Fourier Transform (FFT)-based solution for both actual power measurements for a Xilinx Virtex-II FPGA implementation and circuit measurements for a Xilinx Virtex-5 implementation. The authors show the generality of the approach by applying it to a number of other fast algorithms namely the discrete cosine, the discrete Hartley and the Walsh-Hadamard transforms.
Resumo:
A queue manager (QM) is a core traffic management (TM) function used to provide per-flow queuing in access andmetro networks; however current designs have limited scalability. An on-demand QM (OD-QM) which is part of a new modular field-programmable gate-array (FPGA)-based TM is presented that dynamically maps active flows to the available physical resources; its scalability is derived from exploiting the observation that there are only a few hundred active flows in a high speed network. Simulations with real traffic show that it is a scalable, cost-effective approach that enhances per-flow queuing performance, thereby allowing per-flow QM without the need for extra external memory at speeds up to 10 Gbps. It utilizes 2.3%–16.3% of a Xilinx XC5VSX50t FPGA and works at 111 MHz.
Resumo:
Architectures and methods for the rapid design of silicon cores for implementing discrete wavelet transforms over a wide range of specifications are described. These architectures are efficient, modular, scalable, and cover orthonormal and biorthogonal wavelet transform families. They offer efficient hardware utilization by exploiting a number of core wavelet filter properties and allow the creation of silicon designs that are highly parameterized, including in terms of wavelet type and wordlengths. Control circuitry is embedded within these systems allowing them to be cascaded for any desired level of decomposition without any interface glue logic. The time to produce chip designs for a specific wavelet application is typically less than a day and these are comparable in area and performance to handcrafted designs. They are also portable across a wide range of silicon foundries and suitable for field programmable gate array and programmable logic data implementation. The approach described has also been extended to wavelet packet transforms.
Resumo:
A hardware performance analysis of the SHACAL-2 encryption algorithm is presented in this paper. SHACAL-2 was one of four symmetric key algorithms chosen in the New European Schemes for Signatures, Integrity and Encryption (NESSIE) initiative in 2003. The paper describes a fully pipelined encryption SHACAL-2 architecture implemented on a Xilinx Field Programmable Gate Array (FPGA) device that achieves a throughput of over 25 Gbps. This is the fastest private key encryption algorithm architecture currently available. The SHACAL-2 decryption algorithm is also defined in the paper as it was not provided in the NESSIE submission.
Resumo:
High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.
Resumo:
A new domain-specific, reconfigurable system-on-a-chip (SoC) architecture is proposed for video motion estimation. This has been designed to cover most of the common block-based video coding standards, including MPEG-2, MPEG-4, H.264, WMV-9 and AVS. The architecture exhibits simple control, high throughput and relatively low hardware cost when compared with existing circuits. It can also easily handle flexible search ranges without any increase in silicon area and can be configured prior to the start of the motion estimation process for a specific standard. The computational rates achieved make the circuit suitable for high-end video processing applications, such as HDTV. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards. Indeed, the cost/performance achieved exceeds that of existing but specific solutions and greatly exceeds that of general purpose field programmable gate array (FPGA) designs.
Resumo:
A series of ultra-lightweight digital true random number generators (TRNGs) are presented. These TRNGs are based on the observation that, when a circuit switches from a metastable state to a bi-stable state, the resulting state may be random. Four such circuits with low hardware cost are presented: one uses an XOR gate; one uses a lookup table; one uses a multiplexer and an inverter; and one uses four transistors. The three TRNGs based on the first three circuits are implemented on a field programmable gate array and successfully pass the DIEHARD RNG tests and the National Institute of Standard and Technology (NIST) RNG tests. To the best of the authors' knowledge, the proposed TRNG designs are the most lightweight among existing TRNGs.
Resumo:
Side-channel attacks (SCA) threaten electronic cryptographic devices and can be carried out by monitoring the physical characteristics of security circuits. Differential Power Analysis (DPA) is one the most widely studied side-channel attacks. Numerous countermeasure techniques, such as Random Delay Insertion (RDI), have been proposed to reduce the risk of DPA attacks against cryptographic devices. The RDI technique was first proposed for microprocessors but it was shown to be unsuccessful when implemented on smartcards as it was vulnerable to a variant of the DPA attack known as the Sliding-Window DPA attack.Previous research by the authors investigated the use of the RDI countermeasure for Field Programmable Gate Array (FPGA) based cryptographic devices. A split-RDI technique wasproposed to improve the security of the RDI countermeasure. A set of critical parameters wasalso proposed that could be utilized in the design stage to optimize a security algorithm designwith RDI in terms of area, speed and power. The authors also showed that RDI is an efficientcountermeasure technique on FPGA in comparison to other countermeasures.In this article, a new RDI logic design is proposed that can be used to cost-efficiently implementRDI on FPGA devices. Sliding-Window DPA and realignment attacks, which were shown to beeffective against RDI implemented on smartcard devices, are performed on the improved RDIFPGA implementation. We demonstrate that these attacks are unsuccessful and we also proposea realignment technique that can be used to demonstrate the weakness of RDI implementations.
Resumo:
Sphere Decoding (SD) is a highly effective detection technique for Multiple-Input Multiple-Output (MIMO) wireless communications receivers, offering quasi-optimal accuracy with relatively low computational complexity as compared to the ideal ML detector. Despite this, the computational demands of even low-complexity SD variants, such as Fixed Complexity SD (FSD), remains such that implementation on modern software-defined network equipment is a highly challenging process, and indeed real-time solutions for MIMO systems such as 4 4 16-QAM 802.11n are unreported. This paper overcomes this barrier. By exploiting large-scale networks of fine-grained softwareprogrammable processors on Field Programmable Gate Array (FPGA), a series of unique SD implementations are presented, culminating in the only single-chip, real-time quasi-optimal SD for 44 16-QAM 802.11n MIMO. Furthermore, it demonstrates that the high performance software-defined architectures which enable these implementations exhibit cost comparable to dedicated circuit architectures.
Resumo:
The emergence of programmable logic devices as processing platforms for digital signal processing applications poses challenges concerning rapid implementation and high level optimization of algorithms on these platforms. This paper describes Abhainn, a rapid implementation methodology and toolsuite for translating an algorithmic expression of the system to a working implementation on a heterogeneous multiprocessor/field programmable gate array platform, or a standalone system on programmable chip solution. Two particular focuses for Abhainn are the automated but configurable realisation of inter-processor communuication fabrics, and the establishment of novel dedicated hardware component design methodologies allowing algorithm level transformation for system optimization. This paper outlines the approaches employed in both these particular instances.
Resumo:
A novel hardware architecture for elliptic curve cryptography (ECC) over GF(p) is introduced. This can perform the main prime field arithmetic functions needed in these cryptosystems including modular inversion and multiplication. This is based on a new unified modular inversion algorithm that offers considerable improvement over previous ECC techniques that use Fermat's Little Theorem for this operation. The processor described uses a full-word multiplier which requires much fewer clock cycles than previous methods, while still maintaining a competitive critical path delay. The benefits of the approach have been demonstrated by utilizing these techniques to create a field-programmable gate array (FPGA) design. This can perform a 256-bit prime field scalar point multiplication in 3.86 ms, the fastest FPGA time reported to date. The ECC architecture described can also perform four different types of modular inversion, making it suitable for use in many different ECC applications. © 2006 IEEE.
Resumo:
The paper presents IPPro which is a high performance, scalable soft-core processor targeted for image processing applications. It has been based on the Xilinx DSP48E1 architecture using the ZYNQ Field Programmable Gate Array and is a scalar 16-bit RISC processor that operates at 526MHz, giving 526MIPS of performance. Each IPPro core uses 1 DSP48, 1 Block RAM and 330 Kintex-7 slice-registers, thus making the processor as compact as possible whilst maintaining flexibility and programmability. A key aspect of the approach is in reducing the application design time and implementation effort by using multiple IPPro processors in a SIMD mode. For different applications, this allows us to exploit different levels of parallelism and mapping for the specified processing architecture with the supported instruction set. In this context, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the colour and morphology operations accelerated using multiple IPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 to 33 times for colour filtering and morphology operations respectively, with a reduced design effort and time.
Resumo:
In this paper, a new field-programmable gate array (FPGA) identification generator circuit is introduced based on physically unclonable function (PUF) technology. The new identification generator is able to convert flip-flop delay path variations to unique n-bit digital identifiers (IDs), while requiring only a single slice per ID bit by using 1-bit ID cells formed as hard-macros. An exemplary 128-bit identification generator is implemented on ten Xilinx Spartan-6 FPGA devices. Experimental results show an uniqueness of 48.52%, and reliability of 92.41% over a 25°C to 70°C temperature range and 10% fluctuation in supply voltage
Resumo:
The Field Programmable Gate Array (FPGA) implementation of the commonly used Histogram of Oriented Gradients (HOG) algorithm is explored. The HOG algorithm is employed to extract features for object detection. A key focus has been to explore the use of a new FPGA-based processor which has been targeted at image processing. The paper gives details of the mapping and scheduling factors that influence the performance and the stages that were undertaken to allow the algorithm to be deployed on FPGA hardware, whilst taking into account the specific IPPro architecture features. We show that multi-core IPPro performance can exceed that of against state-of-the-art FPGA designs by up to 3.2 times with reduced design and implementation effort and increased flexibility all on a low cost, Zynq programmable system.